메뉴 건너뛰기




Volumn 42, Issue 1, 2015, Pages 155-165

Neighborhood Guided Smoothed Emphasis for Real Adaboost Ensembles

Author keywords

Classification; Emphasized samples; Nearest neighbors; Real Adaboost

Indexed keywords

CLASSIFICATION (OF INFORMATION);

EID: 84937643696     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-014-9386-1     Document Type: Article
Times cited : (7)

References (30)
  • 4
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire RE, Singer Y (1999) Improved boosting algorithms using confidence-rated predictions. Mach Learn 37:297–336
    • (1999) Mach Learn , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 5
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting, and variants
    • Bauer E, Kohavi R (1997) An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach Learn 36:105–139
    • (1997) Mach Learn , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 6
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
    • Dietterich TG (2000) An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach Learn 40:139–157
    • (2000) Mach Learn , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 7
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Breiman L (1999) Prediction games and arcing algorithms. Neural Comput 11:1493–1518
    • (1999) Neural Comput , vol.11 , pp. 1493-1518
    • Breiman, L.1
  • 8
    • 0035371148 scopus 로고    scopus 로고
    • An adaptive version of the boost by majority algorithm
    • Freund Y (2001) An adaptive version of the boost by majority algorithm. Mach Learn 43:293–318
    • (2001) Mach Learn , vol.43 , pp. 293-318
    • Freund, Y.1
  • 13
    • 21844445229 scopus 로고    scopus 로고
    • Efficient margin maximizing with boosting
    • Rätsch G, Warmuth MK (2005) Efficient margin maximizing with boosting. J Mach Learn Res 6:2131–2152
    • (2005) J Mach Learn Res , vol.6 , pp. 2131-2152
    • Rätsch, G.1    Warmuth, M.K.2
  • 14
    • 33845953137 scopus 로고    scopus 로고
    • Reducing the overfitting of AdaBoost by controlling its data distribution skewness
    • Sun Y, Todorovic S, Li J (2006) Reducing the overfitting of AdaBoost by controlling its data distribution skewness. Pattern Recognit Artif Intell 20:1093–1116
    • (2006) Pattern Recognit Artif Intell , vol.20 , pp. 1093-1116
    • Sun, Y.1    Todorovic, S.2    Li, J.3
  • 15
    • 77950861838 scopus 로고    scopus 로고
    • Boosting through optimization of margin distributions
    • Shen C, Li H (2010) Boosting through optimization of margin distributions. IEEE Trans Neural Netw 21:659–666
    • (2010) IEEE Trans Neural Netw , vol.21 , pp. 659-666
    • Shen, C.1    Li, H.2
  • 16
    • 39049086240 scopus 로고    scopus 로고
    • An efficient modified boosting method for solving classification problems
    • Zhang C-X, Zhang J-S, Zhang G-Y (2008) An efficient modified boosting method for solving classification problems. Comput Appl Math 214:381–392
    • (2008) Comput Appl Math , vol.214 , pp. 381-392
    • Zhang, C.-X.1    Zhang, J.-S.2    Zhang, G.-Y.3
  • 17
    • 35748956765 scopus 로고    scopus 로고
    • A local boosting algorithm for solving classification problems
    • Zhang C-X, Zhang J-S (2008) A local boosting algorithm for solving classification problems. Comput Stat Data Anal 52:1928–1941
    • (2008) Comput Stat Data Anal , vol.52 , pp. 1928-1941
    • Zhang, C.-X.1    Zhang, J.-S.2
  • 18
    • 84937633835 scopus 로고    scopus 로고
    • Mayhua-López E, Gómez-Verdejo V, Figueiras-Vidal AR Boosting ensembles with subsampling LPSVM learners. Inf Fusion (submitted)
    • Mayhua-López E, Gómez-Verdejo V, Figueiras-Vidal AR Boosting ensembles with subsampling LPSVM learners. Inf Fusion (submitted)
  • 20
    • 44649197212 scopus 로고    scopus 로고
    • Adaboost with SVM-based component classifiers
    • Li X, Wang L, Sung E (2008) Adaboost with SVM-based component classifiers. Eng Appl Artif Intell 21:785–795
    • (2008) Eng Appl Artif Intell , vol.21 , pp. 785-795
    • Li, X.1    Wang, L.2    Sung, E.3
  • 21
    • 84884949945 scopus 로고    scopus 로고
    • Feature combiners with gate-generated weights for classification
    • Omari A, Figueiras-Vidal AR (2013) Feature combiners with gate-generated weights for classification. IEEE Trans Neural Netw Learn Syst 24:158–163
    • (2013) IEEE Trans Neural Netw Learn Syst , vol.24 , pp. 158-163
    • Omari, A.1    Figueiras-Vidal, A.R.2
  • 24
    • 33847676236 scopus 로고    scopus 로고
    • Neighborhood property-based pattern selection for Support Vector Machines
    • Shin H, Cho S (2007) Neighborhood property-based pattern selection for Support Vector Machines. Neural Comput 19:816–855
    • (2007) Neural Comput , vol.19 , pp. 816-855
    • Shin, H.1    Cho, S.2
  • 25
    • 84871870466 scopus 로고    scopus 로고
    • Reducing the number of support vectors of SVM classifiers using the smoothed separable case approximation
    • Geebelen D, Suykens JAK, Vandewalle J (2012) Reducing the number of support vectors of SVM classifiers using the smoothed separable case approximation. IEEE Trans Neural Netw Learn Syst 23:682–688
    • (2012) IEEE Trans Neural Netw Learn Syst , vol.23 , pp. 682-688
    • Geebelen, D.1    Suykens, J.A.K.2    Vandewalle, J.3
  • 26
    • 84937643333 scopus 로고    scopus 로고
    • UCI Machine Learning Repository. School of Information and Computer Sciences, University of California, Irvine (online). Accessed 15 July 2012
    • UCI Machine Learning Repository. School of Information and Computer Sciences, University of California, Irvine (online). http://archive.ics.uci.edu/ml. Accessed 15 July 2012
  • 28
    • 0032594960 scopus 로고    scopus 로고
    • Moderating the outputs of support vector machine classifiers
    • Kwok JTY (1999) Moderating the outputs of support vector machine classifiers. IEEE Trans Neural Netw 10:1018–1031
    • (1999) IEEE Trans Neural Netw , vol.10 , pp. 1018-1031
    • Kwok, J.T.Y.1
  • 29
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1:80–83
    • (1945) Biom Bull , vol.1 , pp. 80-83
    • Wilcoxon, F.1
  • 30
    • 84880051653 scopus 로고    scopus 로고
    • Smoothed emphasis for boosting ensembles
    • Rojas I, Joya G, Cabestany J, (eds), 7902, Springer, Berlin
    • Ahachad A, Omari A, Figueiras-Vidal AR (2013) Smoothed emphasis for boosting ensembles. In: Rojas I, Joya G, Cabestany J (eds) Advances in computational intelligence. LNCS, vol 7902. Springer, Berlin, pp 367–375
    • (2013) Advances in computational intelligence. LNCS , pp. 367-375
    • Ahachad, A.1    Omari, A.2    Figueiras-Vidal, A.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.