메뉴 건너뛰기




Volumn 20, Issue 11, 2008, Pages 2792-2838

Boosting method for local learning in statistical pattern recognition

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; AUTOMATED PATTERN RECOGNITION; BAYES THEOREM; BIOMETRY; COMPUTER SIMULATION; HUMAN; LEARNING; STATISTICAL MODEL;

EID: 55749096877     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2008.06-07-549     Document Type: Article
Times cited : (7)

References (28)
  • 2
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and gaussian complexities: Risk bounds and structural results
    • Bartlett, P. L., & Mendelson, S. (2002). Rademacher and gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3, 463-482.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 5
    • 0001068479 scopus 로고    scopus 로고
    • A class of local likelihood methods and near-parametric asymptotics
    • Eguchi, S., & Copas, J. (1998). A class of local likelihood methods and near-parametric asymptotics. Journal of Royal Statistical Society B, 60, 709-724.
    • (1998) Journal of Royal Statistical Society B , vol.60 , pp. 709-724
    • Eguchi, S.1    Copas, J.2
  • 6
    • 0348198929 scopus 로고    scopus 로고
    • Local likelihood method and theory for a bridge between parametric and nonparametric regression
    • Eguchi, S., Kim, T.-Y., & Park, B. U. (2003). Local likelihood method and theory for a bridge between parametric and nonparametric regression. Journal of Nonparametric Statistics, 15, 665-683.
    • (2003) Journal of Nonparametric Statistics , vol.15 , pp. 665-683
    • Eguchi, S.1    Kim, T.-Y.2    Park, B.U.3
  • 8
    • 0000887734 scopus 로고
    • Data-driven bandwidth selection in local polynomial fitting: Variable bandwidth and spatial adaption
    • Fan, J., & Gijbels, I. (1995). Data-driven bandwidth selection in local polynomial fitting: Variable bandwidth and spatial adaption. Journal of Royal Statistical Society B, 57, 371-394.
    • (1995) Journal of Royal Statistical Society B , vol.57 , pp. 371-394
    • Fan, J.1    Gijbels, I.2
  • 10
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55 (1), 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 11
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman, J. H., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28, 337-407.
    • (2000) Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 13
    • 0030367069 scopus 로고    scopus 로고
    • Locally parametric nonparametric density estimation
    • Hjort, N. L., & Jones, M. C. (1996). Locally parametric nonparametric density estimation. Annals of Statistics, 24 (4), 1619-1647.
    • (1996) Annals of Statistics , vol.24 , Issue.4 , pp. 1619-1647
    • Hjort, N.L.1    Jones, M.C.2
  • 15
    • 0004175767 scopus 로고
    • Learning boolean formulae or finite automata is as hard as factoring
    • TR-14-88, Cambridge, MA: Harvard University, Aiken Computation Laboratory
    • Kearns, M., & Valiant, L. G. (1988). Learning boolean formulae or finite automata is as hard as factoring (Tech. Rep. TR-14-88). Cambridge, MA: Harvard University, Aiken Computation Laboratory.
    • (1988) Tech. Rep
    • Kearns, M.1    Valiant, L.G.2
  • 16
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalization error of combined classifiers
    • Koltchinskii, V., & Panchenko, D. (2002). Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30(1), 1-30.
    • (2002) Annals of Statistics , vol.30 , Issue.1 , pp. 1-30
    • Koltchinskii, V.1    Panchenko, D.2
  • 17
    • 55749108162 scopus 로고    scopus 로고
    • Local boosting of decision stumps for regression and classification problems
    • Kotsiantis, S. B., Kanellopoulos, D., & Pintelas, P. E. (2006). Local boosting of decision stumps for regression and classification problems. Journal of Computers, 1(4), 30-37.
    • (2006) Journal of Computers , vol.1 , Issue.4 , pp. 30-37
    • Kotsiantis, S.B.1    Kanellopoulos, D.2    Pintelas, P.E.3
  • 18
    • 84898999495 scopus 로고    scopus 로고
    • Boosting andmaximum likelihood for exponential models
    • T. G. Dietterich, S. Becker, & Z. Ghahramani Eds, Cambridge, MA: MIT Press
    • Lebanon, G., & Lafferty, J. (2002). Boosting andmaximum likelihood for exponential models. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14. Cambridge, MA: MIT Press.
    • (2002) Advances in neural information processing systems , vol.14
    • Lebanon, G.1    Lafferty, J.2
  • 20
    • 9444269961 scopus 로고    scopus 로고
    • On the Bayes-risk consistency of regularized boosting methods
    • Lugosi, G., & Vayatis, N. (2004). On the Bayes-risk consistency of regularized boosting methods. Annals of Statistics, 32, 30-55.
    • (2004) Annals of Statistics , vol.32 , pp. 30-55
    • Lugosi, G.1    Vayatis, N.2
  • 21
    • 0002550596 scopus 로고    scopus 로고
    • Functional gradient techniques for combining hypotheses
    • A. J. Smola, P. L. Bartlett, B. Schölkopf, & D. Schuurmans Eds, Cambridge, MA: MIT Press
    • Mason, L., Baxter, J., Bartlett, P. L., & Frean, M. (1999). Functional gradient techniques for combining hypotheses. In A. J. Smola, P. L. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 221-247). Cambridge, MA: MIT Press.
    • (1999) Advances in large margin classifiers , pp. 221-247
    • Mason, L.1    Baxter, J.2    Bartlett, P.L.3    Frean, M.4
  • 22
    • 0001035413 scopus 로고
    • On the method of bounded differences
    • J. Siemons Ed, Cambridge: Cambridge University Press
    • McDiarmid, C. (1989). On the method of bounded differences. In J. Siemons (Ed.), Surveys in combinatorics. Cambridge: Cambridge University Press.
    • (1989) Surveys in combinatorics
    • McDiarmid, C.1
  • 23
  • 25
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S., & Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323-2326.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 26
    • 0025448521 scopus 로고
    • The strength of the weak learnability
    • Schapire, R. (1990). The strength of the weak learnability. Machine Learning, 5, 197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.1
  • 28
    • 55749096365 scopus 로고    scopus 로고
    • Vincent, P., & Bengio, Y. (2003). Locally weighted full covariance gaussian density estimation (Technical Rep. 1240). Montreal: University of Montreal.
    • Vincent, P., & Bengio, Y. (2003). Locally weighted full covariance gaussian density estimation (Technical Rep. 1240). Montreal: University of Montreal.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.