-
1
-
-
33645505792
-
Convexity, classification, and risk bounds
-
Bartlett, P. L., Jordan, M. I., & McAuliffe, J. D. (2006). Convexity, classification, and risk bounds. Journal of American Statistical Association, 101, 138-156.
-
(2006)
Journal of American Statistical Association
, vol.101
, pp. 138-156
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
2
-
-
0038453192
-
Rademacher and gaussian complexities: Risk bounds and structural results
-
Bartlett, P. L., & Mendelson, S. (2002). Rademacher and gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3, 463-482.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
5
-
-
0001068479
-
A class of local likelihood methods and near-parametric asymptotics
-
Eguchi, S., & Copas, J. (1998). A class of local likelihood methods and near-parametric asymptotics. Journal of Royal Statistical Society B, 60, 709-724.
-
(1998)
Journal of Royal Statistical Society B
, vol.60
, pp. 709-724
-
-
Eguchi, S.1
Copas, J.2
-
6
-
-
0348198929
-
Local likelihood method and theory for a bridge between parametric and nonparametric regression
-
Eguchi, S., Kim, T.-Y., & Park, B. U. (2003). Local likelihood method and theory for a bridge between parametric and nonparametric regression. Journal of Nonparametric Statistics, 15, 665-683.
-
(2003)
Journal of Nonparametric Statistics
, vol.15
, pp. 665-683
-
-
Eguchi, S.1
Kim, T.-Y.2
Park, B.U.3
-
7
-
-
0002389882
-
Local maximum likelihood estimation and inference
-
Fan, J., Farmen, M., & Gijbels, I. (1998). Local maximum likelihood estimation and inference. Journal of Royal Statistical Society B, 50, 591-608.
-
(1998)
Journal of Royal Statistical Society B
, vol.50
, pp. 591-608
-
-
Fan, J.1
Farmen, M.2
Gijbels, I.3
-
8
-
-
0000887734
-
Data-driven bandwidth selection in local polynomial fitting: Variable bandwidth and spatial adaption
-
Fan, J., & Gijbels, I. (1995). Data-driven bandwidth selection in local polynomial fitting: Variable bandwidth and spatial adaption. Journal of Royal Statistical Society B, 57, 371-394.
-
(1995)
Journal of Royal Statistical Society B
, vol.57
, pp. 371-394
-
-
Fan, J.1
Gijbels, I.2
-
10
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55 (1), 119-139.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
11
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
Friedman, J. H., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28, 337-407.
-
(2000)
Annals of Statistics
, vol.28
, pp. 337-407
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
13
-
-
0030367069
-
Locally parametric nonparametric density estimation
-
Hjort, N. L., & Jones, M. C. (1996). Locally parametric nonparametric density estimation. Annals of Statistics, 24 (4), 1619-1647.
-
(1996)
Annals of Statistics
, vol.24
, Issue.4
, pp. 1619-1647
-
-
Hjort, N.L.1
Jones, M.C.2
-
14
-
-
0029255662
-
Robust trainability of single neurons
-
Höffgen, K. U., Simon, H. U., & van Horn, K. S. (1995). Robust trainability of single neurons. Journal of Computer and System Sciences, 50, 114-125.
-
(1995)
Journal of Computer and System Sciences
, vol.50
, pp. 114-125
-
-
Höffgen, K.U.1
Simon, H.U.2
van Horn, K.S.3
-
15
-
-
0004175767
-
Learning boolean formulae or finite automata is as hard as factoring
-
TR-14-88, Cambridge, MA: Harvard University, Aiken Computation Laboratory
-
Kearns, M., & Valiant, L. G. (1988). Learning boolean formulae or finite automata is as hard as factoring (Tech. Rep. TR-14-88). Cambridge, MA: Harvard University, Aiken Computation Laboratory.
-
(1988)
Tech. Rep
-
-
Kearns, M.1
Valiant, L.G.2
-
16
-
-
0036104545
-
Empirical margin distributions and bounding the generalization error of combined classifiers
-
Koltchinskii, V., & Panchenko, D. (2002). Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30(1), 1-30.
-
(2002)
Annals of Statistics
, vol.30
, Issue.1
, pp. 1-30
-
-
Koltchinskii, V.1
Panchenko, D.2
-
17
-
-
55749108162
-
Local boosting of decision stumps for regression and classification problems
-
Kotsiantis, S. B., Kanellopoulos, D., & Pintelas, P. E. (2006). Local boosting of decision stumps for regression and classification problems. Journal of Computers, 1(4), 30-37.
-
(2006)
Journal of Computers
, vol.1
, Issue.4
, pp. 30-37
-
-
Kotsiantis, S.B.1
Kanellopoulos, D.2
Pintelas, P.E.3
-
18
-
-
84898999495
-
Boosting andmaximum likelihood for exponential models
-
T. G. Dietterich, S. Becker, & Z. Ghahramani Eds, Cambridge, MA: MIT Press
-
Lebanon, G., & Lafferty, J. (2002). Boosting andmaximum likelihood for exponential models. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14. Cambridge, MA: MIT Press.
-
(2002)
Advances in neural information processing systems
, vol.14
-
-
Lebanon, G.1
Lafferty, J.2
-
20
-
-
9444269961
-
On the Bayes-risk consistency of regularized boosting methods
-
Lugosi, G., & Vayatis, N. (2004). On the Bayes-risk consistency of regularized boosting methods. Annals of Statistics, 32, 30-55.
-
(2004)
Annals of Statistics
, vol.32
, pp. 30-55
-
-
Lugosi, G.1
Vayatis, N.2
-
21
-
-
0002550596
-
Functional gradient techniques for combining hypotheses
-
A. J. Smola, P. L. Bartlett, B. Schölkopf, & D. Schuurmans Eds, Cambridge, MA: MIT Press
-
Mason, L., Baxter, J., Bartlett, P. L., & Frean, M. (1999). Functional gradient techniques for combining hypotheses. In A. J. Smola, P. L. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 221-247). Cambridge, MA: MIT Press.
-
(1999)
Advances in large margin classifiers
, pp. 221-247
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.L.3
Frean, M.4
-
22
-
-
0001035413
-
On the method of bounded differences
-
J. Siemons Ed, Cambridge: Cambridge University Press
-
McDiarmid, C. (1989). On the method of bounded differences. In J. Siemons (Ed.), Surveys in combinatorics. Cambridge: Cambridge University Press.
-
(1989)
Surveys in combinatorics
-
-
McDiarmid, C.1
-
23
-
-
2942627097
-
Information geometry of U-boost and Bregman divergence
-
Murata, N., Takenouchi, T., Kanamori, T., & Eguchi, S. (2004). Information geometry of U-boost and Bregman divergence. Neural Computation, 16, 1437-1481.
-
(2004)
Neural Computation
, vol.16
, pp. 1437-1481
-
-
Murata, N.1
Takenouchi, T.2
Kanamori, T.3
Eguchi, S.4
-
24
-
-
33745834241
-
-
Available online at
-
Newman, D. J., Hettich, S., Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. Available online at http://www.ics.uci.edu/~mlearn/MLRepository.html.
-
(1998)
UCI repository of machine learning databases
-
-
Newman, D.J.1
Hettich, S.2
Blake, C.L.3
Merz, C.J.4
-
25
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Roweis, S., & Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323-2326.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.1
Saul, L.2
-
26
-
-
0025448521
-
The strength of the weak learnability
-
Schapire, R. (1990). The strength of the weak learnability. Machine Learning, 5, 197-227.
-
(1990)
Machine Learning
, vol.5
, pp. 197-227
-
-
Schapire, R.1
-
28
-
-
55749096365
-
-
Vincent, P., & Bengio, Y. (2003). Locally weighted full covariance gaussian density estimation (Technical Rep. 1240). Montreal: University of Montreal.
-
Vincent, P., & Bengio, Y. (2003). Locally weighted full covariance gaussian density estimation (Technical Rep. 1240). Montreal: University of Montreal.
-
-
-
|