메뉴 건너뛰기




Volumn 21, Issue 4, 2010, Pages 659-666

Boosting through optimization of margin distributions

Author keywords

AdaBoost; Boosting; Column generation; Margin distribution

Indexed keywords

ADABOOST; BOOSTING ALGORITHM; COLUMN GENERATION; DATA SETS; GENERALIZATION ERROR; LOSS FUNCTIONS; MACHINE LEARNING COMMUNITIES; MARGIN THEORY; OPTIMIZATION ALGORITHMS; REGRESSION PROBLEM; TRAINING DATA;

EID: 77950861838     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2010.2040484     Document Type: Article
Times cited : (56)

References (21)
  • 1
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, "Boosting the margin: A new explanation for the effectiveness of voting methods," Ann. Stat., vol.26, no.5, pp. 1651-1686, 1998.
    • (1998) Ann. Stat. , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 2
    • 35248862907 scopus 로고    scopus 로고
    • ser. Advanced Lectures on Machine Learning. New York: Springer-Verlag
    • R. Meir and G. Rätsch, An Introduction to Boosting and Leveraging, ser. Advanced Lectures on Machine Learning. New York: Springer- Verlag, 2003, pp. 118-183.
    • (2003) An Introduction to Boosting and Leveraging , pp. 118-183
    • Meir, R.1    Rätsch, G.2
  • 3
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • L. Breiman, "Prediction games and arcing algorithms," Neural Comput., vol.11, no.7, pp. 1493-1517, 1999.
    • (1999) Neural Comput , vol.11 , Issue.7 , pp. 1493-1517
    • Breiman, L.1
  • 4
    • 0034164230 scopus 로고    scopus 로고
    • Rejoiner for additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani, "Rejoiner for additive logistic regression: A statistical view of boosting," Ann. Stat., vol.28, pp. 400-407, 2000.
    • (2000) Ann. Stat. , vol.28 , pp. 400-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 7
    • 0031638384 scopus 로고    scopus 로고
    • Boosting in the limit: Maximizing the margin of learned ensembles
    • Madison, WI
    • A. J. Grove and D. Schuurmans, "Boosting in the limit: Maximizing the margin of learned ensembles," in Proc. Nat. Conf. Artif. Intell., Madison, WI, 1998, pp. 692-699.
    • (1998) Proc. Nat. Conf. Artif. Intell. , pp. 692-699
    • Grove, A.J.1    Schuurmans, D.2
  • 8
    • 21844445229 scopus 로고    scopus 로고
    • Efficient margin maximizing with boosting
    • G. Rätsch and M. K. Warmuth, "Efficient margin maximizing with boosting," J. Mach. Learn. Res., vol.6, pp. 2131-2152, 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 2131-2152
    • Rätsch, G.1    Warmuth, M.K.2
  • 9
    • 33748541473 scopus 로고    scopus 로고
    • Totally corrective boosting algorithms that maximize the margin
    • Pittsburgh, PA
    • M. K. Warmuth, J. Liao, and G. Rätsch, "Totally corrective boosting algorithms that maximize the margin," in Proc. Int. Conf. Mach. Learn., Pittsburgh, PA, 2006, pp. 1001-1008.
    • (2006) Proc. Int. Conf. Mach. Learn. , pp. 1001-1008
    • Warmuth, M.K.1    Liao, J.2    Rätsch, G.3
  • 10
    • 0036161257 scopus 로고    scopus 로고
    • Linear programming boosting via column generation
    • A. Demiriz, K. P. Bennett, and J. Shawe-Taylor, "Linear programming boosting via column generation," Mach. Learn., vol.46, no.1-3, pp. 225-254, 2002.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 225-254
    • Demiriz, A.1    Bennett, K.P.2    Shawe-Taylor, J.3
  • 11
    • 33749262644 scopus 로고    scopus 로고
    • How boosting the margin can also boost classifier complexity
    • Pittsburgh, PA
    • L. Reyzin and R. E. Schapire, "How boosting the margin can also boost classifier complexity," in Proc. Int. Conf. Mach. Learn., Pittsburgh, PA, 2006, pp. 753-760.
    • (2006) Proc. Int. Conf. Mach. Learn. , pp. 753-760
    • Reyzin, L.1    Schapire, R.E.2
  • 12
    • 1942485250 scopus 로고    scopus 로고
    • Margin distribution and learning
    • Washington, DC
    • A. Garg and D. Roth, "Margin distribution and learning," in Proc. Int. Conf. Mach. Learn., Washington, DC, 2003, pp. 210-217.
    • (2003) Proc. Int. Conf. Mach. Learn. , pp. 210-217
    • Garg, A.1    Roth, D.2
  • 15
    • 78049526892 scopus 로고    scopus 로고
    • On the dual formulation of boosting algorithms
    • [Online]. Available: to be published
    • C. Shen and H. Li, "On the dual formulation of boosting algorithms," IEEE Trans. Pattern Anal. Mach. Intell., 2010 [Online]. Available: http://arxiv:0901.3590, to be published
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell.
    • Shen, C.1    Li, H.2
  • 17
    • 0001391104 scopus 로고
    • Decomposition principle for linear programs
    • G. B. Dantzig and P. Wolfe, "Decomposition principle for linear programs," Operat. Res., vol.8, no.1, pp. 101-111, 1960.
    • (1960) Operat. Res. , vol.8 , Issue.1 , pp. 101-111
    • Dantzig, G.B.1    Wolfe, P.2
  • 18
    • 30344453380 scopus 로고    scopus 로고
    • Selected topics in column generation
    • M. E. Lübbecke and J. Desrosiers, "Selected topics in column generation," Operat. Res., vol.53, no.6, pp. 1007-1023, 2005.
    • (2005) Operat. Res. , vol.53 , Issue.6 , pp. 1007-1023
    • Lübbecke, M.E.1    Desrosiers, J.2
  • 19
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for AdaBoost
    • G. Rätsch, T. Onoda, and K.-R. Müller, "Soft margins for AdaBoost," Mach. Learn., vol.42, no.3, pp. 287-320, 2001.
    • (2001) Mach. Learn. , vol.42 , Issue.3 , pp. 287-320
    • Rätsch, G.1    Onoda, T.2    Müller, K.-R.3
  • 20
    • 67649423366 scopus 로고    scopus 로고
    • Version 5.0 Revision 93, [Online]. Available
    • MOSEK ApS, The MOSEK Optimization Toolbox for Matlab Manual, Version 5.0, Revision 93, 2008 [Online]. Available: http://www.mosek. com/
    • (2008) The MOSEK Optimization Toolbox for Matlab Manual
  • 21
    • 29644438050 scopus 로고    scopus 로고
    • Statisitcal comparisons of classifiers over multiple data sets
    • Dec.
    • J. Demšar, "Statisitcal comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol.7, pp. 1-30, Dec. 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.