메뉴 건너뛰기




Volumn 38, Issue 3, 2015, Pages 158-166

Amygdala-prefrontal interactions in (mal)adaptive learning

Author keywords

Amygdala; Generalization; Oscillations; Pavlovian learning; Prefrontal cortex; Safety

Indexed keywords

AMYGDALOID NUCLEUS; ANXIETY; AVERSION; BASOLATERAL AMYGDALA; CONDITIONING; DISCRIMINATION LEARNING; FEAR; HUMAN; MALADAPTIVE LEARNING; NEUROBIOLOGY; NONHUMAN; PAVLOVIAN CONDITIONING; PREFRONTAL CORTEX; PRIORITY JOURNAL; RECALL; REVIEW; SPECIES; STATE DEPENDENT LEARNING; STIMULUS RESPONSE; THREAT; AMYGDALA; ANIMAL; LEARNING; NERVE TRACT; PHYSIOLOGY;

EID: 84924569780     PISSN: 01662236     EISSN: 1878108X     Source Type: Journal    
DOI: 10.1016/j.tins.2014.12.007     Document Type: Review
Times cited : (146)

References (115)
  • 2
    • 14544267665 scopus 로고    scopus 로고
    • The neuroscience of mammalian associative learning
    • Poulos A.M., Fanselow M.S. The neuroscience of mammalian associative learning. Annu. Rev. Psychol. 2005, 56:207-234.
    • (2005) Annu. Rev. Psychol. , vol.56 , pp. 207-234
    • Poulos, A.M.1    Fanselow, M.S.2
  • 3
    • 84885050350 scopus 로고    scopus 로고
    • Evolutionary development of the amygdaloid complex
    • Pabba M. Evolutionary development of the amygdaloid complex. Front. Neuroanat. 2013, 2:27.
    • (2013) Front. Neuroanat. , vol.2 , pp. 27
    • Pabba, M.1
  • 4
    • 80053983307 scopus 로고    scopus 로고
    • Contribution of genoarchitecture to understanding forebrain evolution and development, with a particular emphasis on the amygdala
    • Medina L., et al. Contribution of genoarchitecture to understanding forebrain evolution and development, with a particular emphasis on the amygdala. Brain. Behav. Evol. 2011, 78:216-236.
    • (2011) Brain. Behav. Evol. , vol.78 , pp. 216-236
    • Medina, L.1
  • 5
    • 0031814748 scopus 로고    scopus 로고
    • Cortical pathways to the mammalian amygdala
    • McDonald A.J. Cortical pathways to the mammalian amygdala. Prog. Neurobiol. 1998, 55:257-332.
    • (1998) Prog. Neurobiol. , vol.55 , pp. 257-332
    • McDonald, A.J.1
  • 7
    • 47749131553 scopus 로고    scopus 로고
    • Neuropeptide S-mediated control of fear expression and extinction: role of intercalated GABAergic neurons in the amygdala
    • Jüngling K., et al. Neuropeptide S-mediated control of fear expression and extinction: role of intercalated GABAergic neurons in the amygdala. Neuron 2008, 59:298-310.
    • (2008) Neuron , vol.59 , pp. 298-310
    • Jüngling, K.1
  • 8
    • 64749101896 scopus 로고    scopus 로고
    • Distinct subtypes of cholecystokinin (CCK)-containing interneurons of the basolateral amygdala identified using a CCK promoter-specific lentivirus
    • Jasnow A.M., et al. Distinct subtypes of cholecystokinin (CCK)-containing interneurons of the basolateral amygdala identified using a CCK promoter-specific lentivirus. J. Neurophysiol. 2009, 101:1494-1506.
    • (2009) J. Neurophysiol. , vol.101 , pp. 1494-1506
    • Jasnow, A.M.1
  • 9
    • 84867249784 scopus 로고    scopus 로고
    • Pituitary adenylate cyclase-activating polypeptide induces postsynaptically expressed potentiation in the intra-amygdala circuit
    • Cho J.H., et al. Pituitary adenylate cyclase-activating polypeptide induces postsynaptically expressed potentiation in the intra-amygdala circuit. J. Neurosci. 2012, 32:14165-14177.
    • (2012) J. Neurosci. , vol.32 , pp. 14165-14177
    • Cho, J.H.1
  • 10
    • 84896847891 scopus 로고    scopus 로고
    • PACAP receptor gene polymorphism impacts fear responses in the amygdala and hippocampus
    • Stevens J.S., et al. PACAP receptor gene polymorphism impacts fear responses in the amygdala and hippocampus. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:3158-3163.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 3158-3163
    • Stevens, J.S.1
  • 11
    • 84856731262 scopus 로고    scopus 로고
    • Evoked axonal oxytocin release in the central amygdala attenuates fear response
    • Knobloch H.S., et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 2012, 73:553-566.
    • (2012) Neuron , vol.73 , pp. 553-566
    • Knobloch, H.S.1
  • 12
    • 84908565905 scopus 로고    scopus 로고
    • Bidirectional regulation of synaptic plasticity in the basolateral amygdala induced by the D1-like family of dopamine receptors and group II metabotropic glutamate receptors
    • Li C., Rainnie D.G. Bidirectional regulation of synaptic plasticity in the basolateral amygdala induced by the D1-like family of dopamine receptors and group II metabotropic glutamate receptors. J. Physiol. 2014, 592:4329-4351.
    • (2014) J. Physiol. , vol.592 , pp. 4329-4351
    • Li, C.1    Rainnie, D.G.2
  • 13
    • 84879557970 scopus 로고    scopus 로고
    • Acute and chronic effects of selective serotonin reuptake inhibitor treatment on fear conditioning: implications for underlying fear circuits
    • Berghardt N.S., Bauer E.P. Acute and chronic effects of selective serotonin reuptake inhibitor treatment on fear conditioning: implications for underlying fear circuits. Neuroscience 2013, 247:253-272.
    • (2013) Neuroscience , vol.247 , pp. 253-272
    • Berghardt, N.S.1    Bauer, E.P.2
  • 14
    • 84887585196 scopus 로고    scopus 로고
    • α7-Containing nicotinic acetylcholine receptors of interneurons of the basolateral amygdala and their role in the regulation of the network excitability
    • Pidoplichko V.I., et al. α7-Containing nicotinic acetylcholine receptors of interneurons of the basolateral amygdala and their role in the regulation of the network excitability. J. Neurophysiol. 2013, 110:2358-2369.
    • (2013) J. Neurophysiol. , vol.110 , pp. 2358-2369
    • Pidoplichko, V.I.1
  • 15
    • 41149175426 scopus 로고    scopus 로고
    • Competition between calcium-activated K+ channels determines cholinergic action on firing properties of basolateral amygdala projection neurons
    • Power J.M., Sah P. Competition between calcium-activated K+ channels determines cholinergic action on firing properties of basolateral amygdala projection neurons. J. Neurosci. 2008, 28:3209-3220.
    • (2008) J. Neurosci. , vol.28 , pp. 3209-3220
    • Power, J.M.1    Sah, P.2
  • 16
    • 0842347434 scopus 로고    scopus 로고
    • The role of muscarinic and nicotinic cholinergic neurotransmission in aversive conditioning: comparing Pavlovian fear conditioning and inhibitory avoidance
    • Tinsley M.R., et al. The role of muscarinic and nicotinic cholinergic neurotransmission in aversive conditioning: comparing Pavlovian fear conditioning and inhibitory avoidance. Learn. Mem. 2004, 11:35-42.
    • (2004) Learn. Mem. , vol.11 , pp. 35-42
    • Tinsley, M.R.1
  • 17
    • 0141745509 scopus 로고    scopus 로고
    • Muscarinic cholinergic influences in memory consolidation
    • Power A.E., et al. Muscarinic cholinergic influences in memory consolidation. Neurobiol. Learn. Mem. 2003, 80:178-193.
    • (2003) Neurobiol. Learn. Mem. , vol.80 , pp. 178-193
    • Power, A.E.1
  • 18
    • 35348855733 scopus 로고    scopus 로고
    • Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses
    • Tully K., et al. Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:14146-14150.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 14146-14150
    • Tully, K.1
  • 19
    • 84878503226 scopus 로고    scopus 로고
    • Type III neuregulin 1 is required for multiple forms of excitatory synaptic plasticity of mouse cortico-amygdala circuits
    • Jiang L., et al. Type III neuregulin 1 is required for multiple forms of excitatory synaptic plasticity of mouse cortico-amygdala circuits. J. Neurosci. 2013, 33:9655-9666.
    • (2013) J. Neurosci. , vol.33 , pp. 9655-9666
    • Jiang, L.1
  • 20
    • 84879303933 scopus 로고    scopus 로고
    • Making lasting memories: remembering the significant
    • McGaugh J.L. Making lasting memories: remembering the significant. Proc. Natl. Acad. Sci. U.S.A. 2013, 110(Suppl. 2):10402-10407.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 10402-10407
    • McGaugh, J.L.1
  • 21
    • 65649109366 scopus 로고    scopus 로고
    • Measuring correlations and interactions among four simultaneously recorded brain regions during learning
    • Paz R., et al. Measuring correlations and interactions among four simultaneously recorded brain regions during learning. J. Neurophysiol. 2009, 101:2507-2515.
    • (2009) J. Neurophysiol. , vol.101 , pp. 2507-2515
    • Paz, R.1
  • 22
    • 84878370790 scopus 로고    scopus 로고
    • Physiological basis for emotional modulation of memory circuits by the amygdala
    • Paz R., Paré D. Physiological basis for emotional modulation of memory circuits by the amygdala. Curr. Opin. Neurobiol. 2013, 23:381-386.
    • (2013) Curr. Opin. Neurobiol. , vol.23 , pp. 381-386
    • Paz, R.1    Paré, D.2
  • 24
    • 30644477578 scopus 로고    scopus 로고
    • Neuronal signals in the monkey basolateral amygdala during reward schedules
    • Sugase-Miyamoto Y., Richmond B.J. Neuronal signals in the monkey basolateral amygdala during reward schedules. J. Neurosci. 2005, 25:11071-11083.
    • (2005) J. Neurosci. , vol.25 , pp. 11071-11083
    • Sugase-Miyamoto, Y.1    Richmond, B.J.2
  • 26
    • 77949742114 scopus 로고    scopus 로고
    • Responses of amygdala neurons to positive reward predicting stimuli depend on background reward (contingency) rather than stimulus-reward pairing (contiguity)
    • Bermudez M.A., Schultz W. Responses of amygdala neurons to positive reward predicting stimuli depend on background reward (contingency) rather than stimulus-reward pairing (contiguity). J. Neurophysiol. 2010, 103:1158-1170.
    • (2010) J. Neurophysiol. , vol.103 , pp. 1158-1170
    • Bermudez, M.A.1    Schultz, W.2
  • 27
    • 84875884923 scopus 로고    scopus 로고
    • The primate amygdala combines information about space and value
    • Peck C.J., et al. The primate amygdala combines information about space and value. Nat. Neurosci. 2013, 16:340-348.
    • (2013) Nat. Neurosci. , vol.16 , pp. 340-348
    • Peck, C.J.1
  • 28
    • 84872062763 scopus 로고    scopus 로고
    • Functional circuits and anatomical distribution of response properties in the primate amygdala
    • Zhang W., et al. Functional circuits and anatomical distribution of response properties in the primate amygdala. J. Neurosci. 2013, 33:722-733.
    • (2013) J. Neurosci. , vol.33 , pp. 722-733
    • Zhang, W.1
  • 29
    • 84862861643 scopus 로고    scopus 로고
    • Aversive-bias and stage-selectivity in neurons of the primate amygdala during acquisition, extinction, and overnight retention
    • Livneh U., Paz R. Aversive-bias and stage-selectivity in neurons of the primate amygdala during acquisition, extinction, and overnight retention. J. Neurosci. 2012, 32:8598-8610.
    • (2012) J. Neurosci. , vol.32 , pp. 8598-8610
    • Livneh, U.1    Paz, R.2
  • 30
    • 84879317872 scopus 로고    scopus 로고
    • Differential recruitment of distinct amygdalar nuclei across appetitive associative learning
    • Cole C., et al. Differential recruitment of distinct amygdalar nuclei across appetitive associative learning. Learn. Mem. 2013, 20:295-299.
    • (2013) Learn. Mem. , vol.20 , pp. 295-299
    • Cole, C.1
  • 31
    • 84907790422 scopus 로고    scopus 로고
    • Bidirectional switch of the valence associated with a hippocampal contextual memory engram
    • Redondo R.L., et al. Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 2014, 513:426-430.
    • (2014) Nature , vol.513 , pp. 426-430
    • Redondo, R.L.1
  • 32
    • 67249100782 scopus 로고    scopus 로고
    • Amygdala inhibitory circuits and the control of fear memory
    • Ehrlich I., et al. Amygdala inhibitory circuits and the control of fear memory. Neuron 2009, 62:757-771.
    • (2009) Neuron , vol.62 , pp. 757-771
    • Ehrlich, I.1
  • 33
    • 80155157843 scopus 로고    scopus 로고
    • Molecular mechanisms of fear learning and memory
    • Johansen J.P., et al. Molecular mechanisms of fear learning and memory. Cell 2011, 147:509-524.
    • (2011) Cell , vol.147 , pp. 509-524
    • Johansen, J.P.1
  • 34
    • 77951041564 scopus 로고    scopus 로고
    • Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear
    • Pape H.C., Paré D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol. Rev. 2010, 90:419-463.
    • (2010) Physiol. Rev. , vol.90 , pp. 419-463
    • Pape, H.C.1    Paré, D.2
  • 35
    • 84901750080 scopus 로고    scopus 로고
    • Amygdala microcircuits controlling learned fear
    • Duvarci S., Paré D. Amygdala microcircuits controlling learned fear. Neuron 2014, 82:966-980.
    • (2014) Neuron , vol.82 , pp. 966-980
    • Duvarci, S.1    Paré, D.2
  • 36
    • 62449248195 scopus 로고    scopus 로고
    • Selective erasure of a fear memory
    • Han J.H., et al. Selective erasure of a fear memory. Science 2009, 13:1492-1496.
    • (2009) Science , vol.13 , pp. 1492-1496
    • Han, J.H.1
  • 37
    • 84860806555 scopus 로고    scopus 로고
    • The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, CPEB
    • Kandel E.R. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, CPEB. Mol. Brain 2012, 5:14.
    • (2012) Mol. Brain , vol.5 , pp. 14
    • Kandel, E.R.1
  • 38
    • 84905457793 scopus 로고    scopus 로고
    • Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training
    • Yiu A.P., et al. Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 2014, 83:722-735.
    • (2014) Neuron , vol.83 , pp. 722-735
    • Yiu, A.P.1
  • 39
    • 74949102638 scopus 로고    scopus 로고
    • CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala
    • Zhou Y., et al. CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat. Neurosci. 2009, 12:1438-1443.
    • (2009) Nat. Neurosci. , vol.12 , pp. 1438-1443
    • Zhou, Y.1
  • 40
    • 0037101970 scopus 로고    scopus 로고
    • Function and regulation of CREB family transcription factors in the nervous system
    • Lonze B.E., Ginty D.D. Function and regulation of CREB family transcription factors in the nervous system. Neuron 2002, 35:605-623.
    • (2002) Neuron , vol.35 , pp. 605-623
    • Lonze, B.E.1    Ginty, D.D.2
  • 41
    • 48349139678 scopus 로고    scopus 로고
    • Switching on and off fear by distinct neuronal circuits
    • Herry C., et al. Switching on and off fear by distinct neuronal circuits. Nature 2008, 454:600-606.
    • (2008) Nature , vol.454 , pp. 600-606
    • Herry, C.1
  • 42
    • 0015045846 scopus 로고
    • Summation and retardation tests of latent inhibition
    • Rescorla R.A. Summation and retardation tests of latent inhibition. J. Comp. Physiol. Psychol. 1971, 75:77-81.
    • (1971) J. Comp. Physiol. Psychol. , vol.75 , pp. 77-81
    • Rescorla, R.A.1
  • 43
    • 17444397415 scopus 로고    scopus 로고
    • Distinct neural signatures for safety and danger in the amygdala and striatum of the mouse
    • Rogan M.T., et al. Distinct neural signatures for safety and danger in the amygdala and striatum of the mouse. Neuron 2005, 46:309-320.
    • (2005) Neuron , vol.46 , pp. 309-320
    • Rogan, M.T.1
  • 44
    • 84892678105 scopus 로고    scopus 로고
    • Learning not to fear: neural correlates of learned safety
    • Kong E., et al. Learning not to fear: neural correlates of learned safety. Neuropsychopharmacology 2014, 39:515-527.
    • (2014) Neuropsychopharmacology , vol.39 , pp. 515-527
    • Kong, E.1
  • 45
    • 84887390063 scopus 로고    scopus 로고
    • Safety signals in the primate amygdala
    • Genud-Gabai R., et al. Safety signals in the primate amygdala. J. Neurosci. 2013, 33:17986-17994.
    • (2013) J. Neurosci. , vol.33 , pp. 17986-17994
    • Genud-Gabai, R.1
  • 46
    • 84874627344 scopus 로고    scopus 로고
    • Safety encoding in the basal amygdala
    • Sangha S., et al. Safety encoding in the basal amygdala. J. Neurosci. 2013, 33:3744-3751.
    • (2013) J. Neurosci. , vol.33 , pp. 3744-3751
    • Sangha, S.1
  • 47
    • 84892698652 scopus 로고    scopus 로고
    • Long-range connectivity defines behavioral specificity of amygdala neurons
    • Senn V., et al. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 2014, 81:428-437.
    • (2014) Neuron , vol.81 , pp. 428-437
    • Senn, V.1
  • 48
    • 84893750387 scopus 로고    scopus 로고
    • Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety
    • Likhtik E., et al. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat. Neurosci. 2014, 17:106-113.
    • (2014) Nat. Neurosci. , vol.17 , pp. 106-113
    • Likhtik, E.1
  • 49
    • 84890498421 scopus 로고    scopus 로고
    • Ensemble coding of context-dependent fear memory in the amygdala
    • Orsini C.A., et al. Ensemble coding of context-dependent fear memory in the amygdala. Front. Behav. Neurosci. 2013, 7:199.
    • (2013) Front. Behav. Neurosci. , vol.7 , pp. 199
    • Orsini, C.A.1
  • 50
    • 78650169462 scopus 로고    scopus 로고
    • Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear
    • Sierra-Mercado D., et al. Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacolgy 2011, 36:529-538.
    • (2011) Neuropsychopharmacolgy , vol.36 , pp. 529-538
    • Sierra-Mercado, D.1
  • 51
    • 80053265513 scopus 로고    scopus 로고
    • Medial prefrontal cortex as an action-outcome predictor
    • Alexander W.H., Brown J.W. Medial prefrontal cortex as an action-outcome predictor. Nat. Neurosci. 2011, 14:1338-1344.
    • (2011) Nat. Neurosci. , vol.14 , pp. 1338-1344
    • Alexander, W.H.1    Brown, J.W.2
  • 52
    • 84888876774 scopus 로고    scopus 로고
    • Functional connectivity between amygdala and cingulate cortex for adaptive aversive learning
    • Klavir O., et al. Functional connectivity between amygdala and cingulate cortex for adaptive aversive learning. Neuron 2013, 80:1290-1300.
    • (2013) Neuron , vol.80 , pp. 1290-1300
    • Klavir, O.1
  • 53
    • 84881557846 scopus 로고    scopus 로고
    • Disrupted amygdala-prefrontal functional connectivity in civilian women with posttraumatic stress disorder
    • Stevens J.S., et al. Disrupted amygdala-prefrontal functional connectivity in civilian women with posttraumatic stress disorder. J. Psychiatr. Res. 2013, 47:1469-1478.
    • (2013) J. Psychiatr. Res. , vol.47 , pp. 1469-1478
    • Stevens, J.S.1
  • 54
    • 84907321098 scopus 로고    scopus 로고
    • Fear and safety engage competing patterns of theta-gamma coupling in the basolateral amygdala
    • Stujenske J.M., et al. Fear and safety engage competing patterns of theta-gamma coupling in the basolateral amygdala. Neuron 2014, 83:919-933.
    • (2014) Neuron , vol.83 , pp. 919-933
    • Stujenske, J.M.1
  • 55
    • 84920930228 scopus 로고    scopus 로고
    • Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans
    • Motzkin J.C., et al. Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biol. Psychiatry 2015, 77:276-284.
    • (2015) Biol. Psychiatry , vol.77 , pp. 276-284
    • Motzkin, J.C.1
  • 56
    • 84869843301 scopus 로고    scopus 로고
    • Gating of fear in prelimbic cortex by hippocampal and amygdala inputs
    • Sotres-Bayon F., et al. Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron 2012, 76:804-812.
    • (2012) Neuron , vol.76 , pp. 804-812
    • Sotres-Bayon, F.1
  • 57
    • 84862891791 scopus 로고    scopus 로고
    • Low-frequency stimulation depresses the primate anterior-cingulate-cortex and prevents spontaneous recovery of aversive memories
    • Klavir O., et al. Low-frequency stimulation depresses the primate anterior-cingulate-cortex and prevents spontaneous recovery of aversive memories. J. Neurosci. 2012, 32:8589-8597.
    • (2012) J. Neurosci. , vol.32 , pp. 8589-8597
    • Klavir, O.1
  • 58
    • 77249140499 scopus 로고    scopus 로고
    • Prelimbic cortical BDNF is required for memory of learned fear but not extinction or innate fear
    • Choi D.C., et al. Prelimbic cortical BDNF is required for memory of learned fear but not extinction or innate fear. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:2675-2680.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 2675-2680
    • Choi, D.C.1
  • 59
    • 84892372575 scopus 로고    scopus 로고
    • Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression
    • Courtin J., et al. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature 2014, 505:92-96.
    • (2014) Nature , vol.505 , pp. 92-96
    • Courtin, J.1
  • 60
    • 84863817133 scopus 로고    scopus 로고
    • Amygdala-prefrontal synchronization underlies resistance to extinction of aversive memories
    • Livneh U., Paz R. Amygdala-prefrontal synchronization underlies resistance to extinction of aversive memories. Neuron 2012, 75:133-142.
    • (2012) Neuron , vol.75 , pp. 133-142
    • Livneh, U.1    Paz, R.2
  • 61
    • 84867638116 scopus 로고    scopus 로고
    • Functional anatomy of neural circuits regulating fear and extinction
    • Knapska E., et al. Functional anatomy of neural circuits regulating fear and extinction. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:17093-17098.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 17093-17098
    • Knapska, E.1
  • 62
    • 77950187815 scopus 로고    scopus 로고
    • Synaptic correlates of fear extinction in the amygdala
    • Amano T., et al. Synaptic correlates of fear extinction in the amygdala. Nat. Neurosci. 2010, 13:489-494.
    • (2010) Nat. Neurosci. , vol.13 , pp. 489-494
    • Amano, T.1
  • 63
    • 84902080748 scopus 로고    scopus 로고
    • Prefrontal single-unit firing associated with deficient extinction in mice
    • Fitzgerald P.J., et al. Prefrontal single-unit firing associated with deficient extinction in mice. Neurobiol. Learn. Mem. 2014, 113:69-81.
    • (2014) Neurobiol. Learn. Mem. , vol.113 , pp. 69-81
    • Fitzgerald, P.J.1
  • 64
    • 84866732155 scopus 로고    scopus 로고
    • Chronic alcohol remodels prefrontal neurons and disrupts NMDAR-mediated fear extinction encoding
    • Holmes A., et al. Chronic alcohol remodels prefrontal neurons and disrupts NMDAR-mediated fear extinction encoding. Nat. Neurosci. 2012, 15:1259-1261.
    • (2012) Nat. Neurosci. , vol.15 , pp. 1259-1261
    • Holmes, A.1
  • 65
    • 84883050999 scopus 로고    scopus 로고
    • Inhibition and impulsivity: behavioral and neural basis of response control
    • Bari A., Robbins T.W. Inhibition and impulsivity: behavioral and neural basis of response control. Prog. Neurobiol. 2013, 108:44-79.
    • (2013) Prog. Neurobiol. , vol.108 , pp. 44-79
    • Bari, A.1    Robbins, T.W.2
  • 66
    • 84889054860 scopus 로고    scopus 로고
    • The prelimbic cortex and subthalamic nucleus contribute to cue-guided behavioral switching
    • Baker P.M., Ragozzino M.E. The prelimbic cortex and subthalamic nucleus contribute to cue-guided behavioral switching. Neurobiol. Learn. Mem. 2014, 107:65-78.
    • (2014) Neurobiol. Learn. Mem. , vol.107 , pp. 65-78
    • Baker, P.M.1    Ragozzino, M.E.2
  • 67
    • 84904994739 scopus 로고    scopus 로고
    • Specialized prefrontal "auditory fields": organization of primate prefrontal-temporal pathways
    • Medalla M., Barbas H. Specialized prefrontal "auditory fields": organization of primate prefrontal-temporal pathways. Front. Neurosci. 2014, 8:77.
    • (2014) Front. Neurosci. , vol.8 , pp. 77
    • Medalla, M.1    Barbas, H.2
  • 68
    • 40849094658 scopus 로고    scopus 로고
    • Learning-related plasticity of temporal coding in simultaneously recorded amygdala-cortical ensembles
    • Grossman S.E., et al. Learning-related plasticity of temporal coding in simultaneously recorded amygdala-cortical ensembles. J. Neurosci. 2008, 28:2864-2873.
    • (2008) J. Neurosci. , vol.28 , pp. 2864-2873
    • Grossman, S.E.1
  • 69
    • 77955287967 scopus 로고    scopus 로고
    • Role of secondary sensory cortices in emotional memory storage and retrieval in rats
    • Sacco T., Sacchetti B. Role of secondary sensory cortices in emotional memory storage and retrieval in rats. Science 2010, 329:649-656.
    • (2010) Science , vol.329 , pp. 649-656
    • Sacco, T.1    Sacchetti, B.2
  • 70
    • 84875471598 scopus 로고    scopus 로고
    • Fear conditioning enhances & oscillations and their entrainment of neurons representing the conditioned stimulus
    • Headley D.B., Weinberger N.M. Fear conditioning enhances & oscillations and their entrainment of neurons representing the conditioned stimulus. J. Neurosci. 2013, 33:5705-5717.
    • (2013) J. Neurosci. , vol.33 , pp. 5705-5717
    • Headley, D.B.1    Weinberger, N.M.2
  • 71
    • 83555166188 scopus 로고    scopus 로고
    • A disinhibitory microcircuit for associative fear learning in the auditory cortex
    • Letzkus J.J., et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 2011, 480:331-335.
    • (2011) Nature , vol.480 , pp. 331-335
    • Letzkus, J.J.1
  • 72
    • 84871800396 scopus 로고    scopus 로고
    • Perceiving threat in the face of safety: excitation and inhibition of conditioned fear in human visual cortex
    • Miskovic V., Keil A. Perceiving threat in the face of safety: excitation and inhibition of conditioned fear in human visual cortex. J. Neurosci. 2013, 33:72-77.
    • (2013) J. Neurosci. , vol.33 , pp. 72-77
    • Miskovic, V.1    Keil, A.2
  • 73
    • 84872764741 scopus 로고    scopus 로고
    • Activation of the basolateral amygdala induces long-term enhancement of specific memory representations in the cerebral cortex
    • Chavez C.M., et al. Activation of the basolateral amygdala induces long-term enhancement of specific memory representations in the cerebral cortex. Neurobiol. Learn. Mem. 2013, 101:8-18.
    • (2013) Neurobiol. Learn. Mem. , vol.101 , pp. 8-18
    • Chavez, C.M.1
  • 74
    • 84869435140 scopus 로고    scopus 로고
    • Interplay of amygdala and insular cortex during and after associative taste aversion memory formation
    • Guzman-Ramos K., Bermudez-Rattoni F. Interplay of amygdala and insular cortex during and after associative taste aversion memory formation. Rev. Neurosci. 2012, 23:463-471.
    • (2012) Rev. Neurosci. , vol.23 , pp. 463-471
    • Guzman-Ramos, K.1    Bermudez-Rattoni, F.2
  • 75
    • 79551647877 scopus 로고    scopus 로고
    • Basolateral amygdala inactivation impairs learning-induced long-term potentiation in the cerebellar cortex
    • Zhu L., et al. Basolateral amygdala inactivation impairs learning-induced long-term potentiation in the cerebellar cortex. PLoS ONE 2011, 6:e16673.
    • (2011) PLoS ONE , vol.6
    • Zhu, L.1
  • 76
    • 83455179197 scopus 로고    scopus 로고
    • Attention for learning signals in anterior cingulate cortex
    • Bryden D.W., et al. Attention for learning signals in anterior cingulate cortex. J. Neurosci. 2011, 31:18266-18274.
    • (2011) J. Neurosci. , vol.31 , pp. 18266-18274
    • Bryden, D.W.1
  • 77
    • 77958123109 scopus 로고    scopus 로고
    • The role of prefrontal cortex in predictive fear learning
    • Furlong T.M., et al. The role of prefrontal cortex in predictive fear learning. Behav. Neurosci. 2010, 124:574-586.
    • (2010) Behav. Neurosci. , vol.124 , pp. 574-586
    • Furlong, T.M.1
  • 78
    • 77249084637 scopus 로고    scopus 로고
    • Neural correlates of variations in event processing during learning in basolateral amygdala
    • Roesch M.R., et al. Neural correlates of variations in event processing during learning in basolateral amygdala. J. Neurosci. 2010, 20:2464-2471.
    • (2010) J. Neurosci. , vol.20 , pp. 2464-2471
    • Roesch, M.R.1
  • 79
    • 80053236449 scopus 로고    scopus 로고
    • Differential roles of human striatum and amygdala in associative learning
    • Li J., et al. Differential roles of human striatum and amygdala in associative learning. Nat. Neurosci. 2012, 14:1250-1252.
    • (2012) Nat. Neurosci. , vol.14 , pp. 1250-1252
    • Li, J.1
  • 80
    • 77952178459 scopus 로고    scopus 로고
    • A translational bridge between mouse and human models of learned safety
    • Pollak D.D., et al. A translational bridge between mouse and human models of learned safety. Ann. Med. 2010, 42:115-122.
    • (2010) Ann. Med. , vol.42 , pp. 115-122
    • Pollak, D.D.1
  • 81
    • 84874946150 scopus 로고    scopus 로고
    • Ventromedial prefrontal cortex reactivity is altered in generalized anxiety disorder during fear generalization
    • Greenberg T., et al. Ventromedial prefrontal cortex reactivity is altered in generalized anxiety disorder during fear generalization. Depress. Anxiety 2013, 30:242-250.
    • (2013) Depress. Anxiety , vol.30 , pp. 242-250
    • Greenberg, T.1
  • 82
    • 84896788738 scopus 로고    scopus 로고
    • Circuit-wide structural and functional measures predict ventromedial prefrontal cortex fear generalization: implications for generalized anxiety disorder
    • Cha J., et al. Circuit-wide structural and functional measures predict ventromedial prefrontal cortex fear generalization: implications for generalized anxiety disorder. J. Neurosci. 2014, 34:4043-4053.
    • (2014) J. Neurosci. , vol.34 , pp. 4043-4053
    • Cha, J.1
  • 83
    • 84875842859 scopus 로고    scopus 로고
    • Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease
    • Buzsáki G., Watson B.O. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin. Neurosci. 2012, 14:345-367.
    • (2012) Dialogues Clin. Neurosci. , vol.14 , pp. 345-367
    • Buzsáki, G.1    Watson, B.O.2
  • 84
    • 84875515072 scopus 로고    scopus 로고
    • The O-γ neural code
    • Lisman J.E., Jensen O. The O-γ- neural code. Neuron 2013, 77:1002-1016.
    • (2013) Neuron , vol.77 , pp. 1002-1016
    • Lisman, J.E.1    Jensen, O.2
  • 85
    • 79959599768 scopus 로고    scopus 로고
    • Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction
    • Lesting J., et al. Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction. PLoS ONE 2011, 6:e21714.
    • (2011) PLoS ONE , vol.6
    • Lesting, J.1
  • 86
    • 84886261911 scopus 로고    scopus 로고
    • Directional theta coherence in prefrontal cortical to amygdalo-hippocampal pathways signals fear extinction
    • Lesting J., et al. Directional theta coherence in prefrontal cortical to amygdalo-hippocampal pathways signals fear extinction. PLoS ONE 2013, 8:e77707.
    • (2013) PLoS ONE , vol.8
    • Lesting, J.1
  • 87
    • 84901020350 scopus 로고    scopus 로고
    • Prefrontal oscillations during recall of conditioned and extinguished fear in humans
    • Mueller E.M., et al. Prefrontal oscillations during recall of conditioned and extinguished fear in humans. J. Neurosci. 2014, 34:7059-7066.
    • (2014) J. Neurosci. , vol.34 , pp. 7059-7066
    • Mueller, E.M.1
  • 88
    • 77950891444 scopus 로고    scopus 로고
    • Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep
    • Popa D., et al. Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:6516-6519.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 6516-6519
    • Popa, D.1
  • 89
    • 84902073526 scopus 로고    scopus 로고
    • Persistence of amygdala gamma oscillations during extinction learning predicts spontaneous recovery
    • Courtin J., et al. Persistence of amygdala gamma oscillations during extinction learning predicts spontaneous recovery. Neurobiol. Learn. Mem. 2014, 113:82-89.
    • (2014) Neurobiol. Learn. Mem. , vol.113 , pp. 82-89
    • Courtin, J.1
  • 90
    • 84895424356 scopus 로고    scopus 로고
    • Layer-specific GABAergic control of distinct gamma oscillations in the CA1 hippocampus
    • Lasztóczi B., Klausberger T. Layer-specific GABAergic control of distinct gamma oscillations in the CA1 hippocampus. Neuron 2014, 81:1126-1139.
    • (2014) Neuron , vol.81 , pp. 1126-1139
    • Lasztóczi, B.1    Klausberger, T.2
  • 91
    • 84884243302 scopus 로고    scopus 로고
    • Inhibitory gradient along the dorsoventral axis in the medial entorhinal cortex
    • Beed P., et al. Inhibitory gradient along the dorsoventral axis in the medial entorhinal cortex. Neuron 2013, 79:1197-1207.
    • (2013) Neuron , vol.79 , pp. 1197-1207
    • Beed, P.1
  • 92
    • 84888018818 scopus 로고    scopus 로고
    • Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses
    • Trouche S., et al. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses. Neuron 2013, 80:1054-1065.
    • (2013) Neuron , vol.80 , pp. 1054-1065
    • Trouche, S.1
  • 93
    • 84880610963 scopus 로고    scopus 로고
    • Inhibitory networks of the amygdala for emotional memory
    • Lee S., et al. Inhibitory networks of the amygdala for emotional memory. Front. Neural. Circuits 2013, 7:129.
    • (2013) Front. Neural. Circuits , vol.7 , pp. 129
    • Lee, S.1
  • 94
    • 48349130684 scopus 로고    scopus 로고
    • Amygdala intercalated neurons are required for expression of fear extinction
    • Likhtik E., et al. Amygdala intercalated neurons are required for expression of fear extinction. Nature 2008, 454:642-645.
    • (2008) Nature , vol.454 , pp. 642-645
    • Likhtik, E.1
  • 95
    • 77953928482 scopus 로고    scopus 로고
    • Fear thou not: activity of frontal and temporal circuits in moments of real-life courage
    • Nili U., et al. Fear thou not: activity of frontal and temporal circuits in moments of real-life courage. Neuron 2010, 66:949-962.
    • (2010) Neuron , vol.66 , pp. 949-962
    • Nili, U.1
  • 96
    • 77952544115 scopus 로고    scopus 로고
    • Prefrontal control of fear: more than just extinction
    • Sotres-Bayon F., Quirk G.J. Prefrontal control of fear: more than just extinction. Curr. Opin. Neurobiol. 2010, 20:231-235.
    • (2010) Curr. Opin. Neurobiol. , vol.20 , pp. 231-235
    • Sotres-Bayon, F.1    Quirk, G.J.2
  • 97
    • 79551663314 scopus 로고    scopus 로고
    • Fear-conditioning mechanisms associated with trait vulnerability to anxiety in humans
    • Indovina I., et al. Fear-conditioning mechanisms associated with trait vulnerability to anxiety in humans. Neuron 2011, 69:563-571.
    • (2011) Neuron , vol.69 , pp. 563-571
    • Indovina, I.1
  • 98
    • 84897007301 scopus 로고    scopus 로고
    • Modulating fear extinction memory by manipulating SK potassium channels in the infralimbic cortex
    • Criado-Marrero M., et al. Modulating fear extinction memory by manipulating SK potassium channels in the infralimbic cortex. Front. Behav. Neurosci. 2014, 8:96.
    • (2014) Front. Behav. Neurosci. , vol.8 , pp. 96
    • Criado-Marrero, M.1
  • 99
    • 84876552528 scopus 로고    scopus 로고
    • Fear extinction induces mGluR5-mediated synaptic and intrinsic plasticity in infralimbic neurons
    • Sepulveda-Orengo M.T., et al. Fear extinction induces mGluR5-mediated synaptic and intrinsic plasticity in infralimbic neurons. J. Neurosci. 2013, 33:7184-7193.
    • (2013) J. Neurosci. , vol.33 , pp. 7184-7193
    • Sepulveda-Orengo, M.T.1
  • 100
    • 77953282058 scopus 로고    scopus 로고
    • Induction of fear extinction with hippocampal-infralimbic BDNF
    • Peters J., et al. Induction of fear extinction with hippocampal-infralimbic BDNF. Science 2010, 328:1288-1290.
    • (2010) Science , vol.328 , pp. 1288-1290
    • Peters, J.1
  • 101
    • 84901049666 scopus 로고    scopus 로고
    • Involvement of BDNF signaling transmission from basolateral amygdala to infralimbic prefrontal cortex in conditioned taste aversion extinction
    • Xin J., et al. Involvement of BDNF signaling transmission from basolateral amygdala to infralimbic prefrontal cortex in conditioned taste aversion extinction. J. Neurosci. 2014, 34:7302-7313.
    • (2014) J. Neurosci. , vol.34 , pp. 7302-7313
    • Xin, J.1
  • 102
    • 79959370654 scopus 로고    scopus 로고
    • Physiological identification and infralimbic responsiveness of rat intercalated amygdala neurons
    • Amir A., et al. Physiological identification and infralimbic responsiveness of rat intercalated amygdala neurons. J. Neurophysiol. 2011, 105:3054-30566.
    • (2011) J. Neurophysiol. , vol.105 , pp. 3054-30566
    • Amir, A.1
  • 103
    • 84890554863 scopus 로고    scopus 로고
    • Synaptic encoding of fear extinction in mPFC-amygdala circuits
    • Cho J.H., et al. Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron 2013, 80:1491-1507.
    • (2013) Neuron , vol.80 , pp. 1491-1507
    • Cho, J.H.1
  • 104
    • 84901285980 scopus 로고    scopus 로고
    • Amygdala interneuron subtypes control fear learning through disinhibition
    • Wolff S.B., et al. Amygdala interneuron subtypes control fear learning through disinhibition. Nature 2014, 509:453-458.
    • (2014) Nature , vol.509 , pp. 453-458
    • Wolff, S.B.1
  • 105
    • 84897008844 scopus 로고    scopus 로고
    • Ex vivo dissection of optogenetically activated mPFC and hippocampal inputs to neurons in the basolateral amygdala: implications for fear and emotional memory
    • Hübner C., et al. Ex vivo dissection of optogenetically activated mPFC and hippocampal inputs to neurons in the basolateral amygdala: implications for fear and emotional memory. Front. Behav. Neurosci. 2014, 8:64.
    • (2014) Front. Behav. Neurosci. , vol.8 , pp. 64
    • Hübner, C.1
  • 106
    • 64649085923 scopus 로고    scopus 로고
    • Posttraumatic stress disorder may be associated with impaired fear inhibition: relation to symptom severity
    • Jovanovic T., et al. Posttraumatic stress disorder may be associated with impaired fear inhibition: relation to symptom severity. Psychiatry Res. 2009, 167:151-160.
    • (2009) Psychiatry Res. , vol.167 , pp. 151-160
    • Jovanovic, T.1
  • 107
    • 34548532346 scopus 로고    scopus 로고
    • Localization of a stable neural correlate of associative memory
    • Reijmers L.G., et al. Localization of a stable neural correlate of associative memory. Science 2007, 317:1230-1233.
    • (2007) Science , vol.317 , pp. 1230-1233
    • Reijmers, L.G.1
  • 108
    • 73349108496 scopus 로고    scopus 로고
    • Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators
    • Tian L., et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 2009, 6:875-881.
    • (2009) Nat. Methods , vol.6 , pp. 875-881
    • Tian, L.1
  • 109
    • 84904676650 scopus 로고    scopus 로고
    • Chemogenetic tools to interrogate brain function
    • Sternson S.M., Roth B.L. Chemogenetic tools to interrogate brain function. Annu. Rev. Neurosci. 2014, 37:387-407.
    • (2014) Annu. Rev. Neurosci. , vol.37 , pp. 387-407
    • Sternson, S.M.1    Roth, B.L.2
  • 110
    • 0345133280 scopus 로고    scopus 로고
    • Channelrhodopsin-2, a directly light-gated cation-selective membrane channel
    • Nagel G., et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:13940-13945.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 13940-13945
    • Nagel, G.1
  • 111
    • 84857097106 scopus 로고    scopus 로고
    • Genetically encoded molecular tools for light-driven silencing of targeted neurons
    • Chow B.Y., et al. Genetically encoded molecular tools for light-driven silencing of targeted neurons. Prog. Brain Res. 2012, 196:49-61.
    • (2012) Prog. Brain Res. , vol.196 , pp. 49-61
    • Chow, B.Y.1
  • 112
    • 79959873914 scopus 로고    scopus 로고
    • The development and application of optogenetics
    • Fenno L., et al. The development and application of optogenetics. Annu. Rev. Neurosci. 2011, 34:389-412.
    • (2011) Annu. Rev. Neurosci. , vol.34 , pp. 389-412
    • Fenno, L.1
  • 113
    • 84901009992 scopus 로고    scopus 로고
    • Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus midbrain pathway for feeding behavior
    • Stachniak T.J., et al. Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus midbrain pathway for feeding behavior. Neuron 2014, 82:797-808.
    • (2014) Neuron , vol.82 , pp. 797-808
    • Stachniak, T.J.1
  • 114
    • 84908343414 scopus 로고    scopus 로고
    • Regional and tissue-specific differences in brain glutamate concentration measured by in vivo single voxel MRS
    • Zhang Y., Shen J. Regional and tissue-specific differences in brain glutamate concentration measured by in vivo single voxel MRS. J. Neurosci. Methods 2014, 239C:94-99.
    • (2014) J. Neurosci. Methods , vol.239 C , pp. 94-99
    • Zhang, Y.1    Shen, J.2
  • 115
    • 85003405875 scopus 로고    scopus 로고
    • How to detect amygdala activity with magnetoencephalography using source imaging
    • Balderston N.L., et al. How to detect amygdala activity with magnetoencephalography using source imaging. J. Vis. Exp. 2013, 76:e50212.
    • (2013) J. Vis. Exp. , vol.76
    • Balderston, N.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.