메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 323-328

Missing data imputation in breast cancer prognosis

Author keywords

Artificial neural networks; Breast cancer; Missing data imputation; Prognosis

Indexed keywords

CALIBRATION; DATA HANDLING; DATA RECORDING; DATA REDUCTION; MEDICAL COMPUTING; NEURAL NETWORKS;

EID: 33847242638     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (26)

References (33)
  • 1
    • 0004093524 scopus 로고    scopus 로고
    • Sage Pub, Thousand Oaks, CA
    • P.D. Allison. Missing data. Sage Pub., Thousand Oaks, CA, 2002.
    • (2002) Missing data
    • Allison, P.D.1
  • 2
    • 0142216643 scopus 로고    scopus 로고
    • Prognosis in node-negative primary breast cancer: A neural network analysis of risk profiles using routinely assessed factors
    • E. Biganzoli, P. Boracchi, D. Coradini, M. Daidone, and E. Marubini. Prognosis in node-negative primary breast cancer: a neural network analysis of risk profiles using routinely assessed factors. Ann Oncol, 14:1484-1493, 2003.
    • (2003) Ann Oncol , vol.14 , pp. 1484-1493
    • Biganzoli, E.1    Boracchi, P.2    Coradini, D.3    Daidone, M.4    Marubini, E.5
  • 3
    • 0031921607 scopus 로고    scopus 로고
    • Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
    • E. Biganzoli, P. Boracchi, L. Mariani, and E. Marubini. Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach. Stat Med, 17:1169-1186, 1998.
    • (1998) Stat Med , vol.17 , pp. 1169-1186
    • Biganzoli, E.1    Boracchi, P.2    Mariani, L.3    Marubini, E.4
  • 4
    • 0035977415 scopus 로고    scopus 로고
    • Modelling cause-specific hazards with radial basis function artificial neural networks: Application to 2233 breast cancer patients
    • P. Boracchi, E. Biganzoli, and E. Marubini. Modelling cause-specific hazards with radial basis function artificial neural networks: application to 2233 breast cancer patients. Stat Med, 20:3677-3694, 2001.
    • (2001) Stat Med , vol.20 , pp. 3677-3694
    • Boracchi, P.1    Biganzoli, E.2    Marubini, E.3
  • 5
    • 0031233464 scopus 로고    scopus 로고
    • On the use of artificial neural networks for the analysis of survival data
    • S. Brown, A. Branford, and W. Moran. On the use of artificial neural networks for the analysis of survival data. IEEE Trans Neu Net, 8:1071 -1077, 1997.
    • (1997) IEEE Trans Neu Net , vol.8 , pp. 1071-1077
    • Brown, S.1    Branford, A.2    Moran, W.3
  • 7
    • 0000336139 scopus 로고
    • Regression models and life tables
    • D. Cox. Regression models and life tables. J R Stat Soc, 34:187-202, 1972.
    • (1972) J R Stat Soc , vol.34 , pp. 187-202
    • Cox, D.1
  • 8
    • 0033375308 scopus 로고    scopus 로고
    • A prognostic model that makes quantitative estimates of probability of relapse for breast cancer patients
    • M. De Laurentis, S. De Placido, A. Bianco, G. Clark, and P. Ravdin. A prognostic model that makes quantitative estimates of probability of relapse for breast cancer patients. Clin Cancer Res, 5:4133-4139, 1999.
    • (1999) Clin Cancer Res , vol.5 , pp. 4133-4139
    • De Laurentis, M.1    De Placido, S.2    Bianco, A.3    Clark, G.4    Ravdin, P.5
  • 9
    • 0028328448 scopus 로고
    • A technique for using neural network analysis to perform survival analysis of censored data
    • M. De Laurentis and P. Ravdin. A technique for using neural network analysis to perform survival analysis of censored data. Cancer Lett, 77:127-138, 1994.
    • (1994) Cancer Lett , vol.77 , pp. 127-138
    • De Laurentis, M.1    Ravdin, P.2
  • 10
    • 0043126911 scopus 로고    scopus 로고
    • Logistic regression and artificial neural network classification models: A methodology review
    • S. Dreiseitl and L. Ohno-Machado. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inf, 35:352-359, 2002.
    • (2002) J Biomed Inf , vol.35 , pp. 352-359
    • Dreiseitl, S.1    Ohno-Machado, L.2
  • 13
    • 0031487090 scopus 로고    scopus 로고
    • Bayesian neural network models for censored data
    • D. Faraggi, R. Simon, E. Yaskil, and A. Kramar. Bayesian neural network models for censored data. Biometrica J., 5:519-532, 1997.
    • (1997) Biometrica J , vol.5 , pp. 519-532
    • Faraggi, D.1    Simon, R.2    Yaskil, E.3    Kramar, A.4
  • 15
    • 0020083498 scopus 로고
    • The meaning and use of the area under the receiver operating characteristic (roc) curve
    • J. Hanley and B. McNeil. The meaning and use of the area under the receiver operating characteristic (roc) curve. Radiology, 143:29-36, 1982.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.1    McNeil, B.2
  • 16
    • 14944360441 scopus 로고    scopus 로고
    • Missing-data methods for generalised linear models: A comparative review
    • J.G. Ibrahim, M.H. Chen, and S.R. Herring. Missing-data methods for generalised linear models: A comparative review. J Am Stat Assoc, 100(469):332-326, 2005.
    • (2005) J Am Stat Assoc , vol.100 , Issue.469 , pp. 332-326
    • Ibrahim, J.G.1    Chen, M.H.2    Herring, S.R.3
  • 17
    • 1842856149 scopus 로고    scopus 로고
    • A combined neural network and decision trees model for prognosis of breast cancer relapse
    • J. Jerez, J. Górnez, G. Ramos, J. Muñoz, and E. Alba. A combined neural network and decision trees model for prognosis of breast cancer relapse. Artif Intell Med, 27:45-63, 2003.
    • (2003) Artif Intell Med , vol.27 , pp. 45-63
    • Jerez, J.1    Górnez, J.2    Ramos, G.3    Muñoz, J.4    Alba, E.5
  • 19
    • 84928850463 scopus 로고
    • Effect on secondary data analysis of common imputation methods
    • J.H. Jihn and J. Sedransk. Effect on secondary data analysis of common imputation methods. Soc Method, 19:213-241, 1989.
    • (1989) Soc Method , vol.19 , pp. 213-241
    • Jihn, J.H.1    Sedransk, J.2
  • 22
    • 0037114493 scopus 로고    scopus 로고
    • Updating of covariates and choice of time origin in survival analysis: Problems with vaguely defined disease states
    • K. Liestol and P. Andersen. Updating of covariates and choice of time origin in survival analysis: problems with vaguely defined disease states. Stat Med, 21:3701-3714, 2002.
    • (2002) Stat Med , vol.21 , pp. 3701-3714
    • Liestol, K.1    Andersen, P.2
  • 24
    • 0032730109 scopus 로고    scopus 로고
    • Artificial neural networks applied to survival prediction in breast cancer
    • M. Lundin, J. Lundin, H. Burke, S. Toikkanen, Pylkken, and H. Joensuu. Artificial neural networks applied to survival prediction in breast cancer. Oncology, 57:281-286, 1999.
    • (1999) Oncology , vol.57 , pp. 281-286
    • Lundin, M.1    Lundin, J.2    Burke, H.3    Toikkanen, S.4    Pylkken5    Joensuu, H.6
  • 25
    • 16344379897 scopus 로고    scopus 로고
    • Partial identification with missing data: Concepts and findings
    • C. Manski. Partial identification with missing data: concepts and findings. Int J Aprox Rea, 39(2-3): 151-165, 2005.
    • (2005) Int J Aprox Rea , vol.39 , Issue.2-3 , pp. 151-165
    • Manski, C.1
  • 26
    • 0030938915 scopus 로고    scopus 로고
    • A comparison of cox proportional hazards and artificial neural network models for medical prognosis
    • L. Ohno-Machado. A comparison of cox proportional hazards and artificial neural network models for medical prognosis. Comput Biol Med, 27:55-65, 1997.
    • (1997) Comput Biol Med , vol.27 , pp. 55-65
    • Ohno-Machado, L.1
  • 27
    • 28444445926 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0
    • R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2005. ISBN 3-900051-07-0.
    • (2005) R: A Language and Environment for Statistical Computing
  • 28
    • 0026794564 scopus 로고
    • A practical application of neural network analysis for predicting outcome of individual breast cancer patients
    • P. Ravdin and G. Clark. A practical application of neural network analysis for predicting outcome of individual breast cancer patients. Breast Cancer Res Treat, 22:285-293, 1992.
    • (1992) Breast Cancer Res Treat , vol.22 , pp. 285-293
    • Ravdin, P.1    Clark, G.2
  • 29
    • 0032261833 scopus 로고    scopus 로고
    • Neural network models for breast cancer prognosis
    • R. Ripley, A. Harris, and L. Tarassenko. Neural network models for breast cancer prognosis. Neural Comput. Appl., 7:367-375, 1998.
    • (1998) Neural Comput. Appl , vol.7 , pp. 367-375
    • Ripley, R.1    Harris, A.2    Tarassenko, L.3
  • 30
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputation after +18 years
    • D. Rubin. Multiple imputation after +18 years. J Am Stat Assoc, 91:473-489, 1996.
    • (1996) J Am Stat Assoc , vol.91 , pp. 473-489
    • Rubin, D.1
  • 32
    • 33847208354 scopus 로고    scopus 로고
    • Chapman and Hall, New York
    • J.L. Schafer. Missing data. Chapman and Hall, New York, 1997.
    • (1997) Missing data
    • Schafer, J.L.1
  • 33
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • J.L. Schafer and J.W. Graham. Missing data: Our view of the state of the art. Psychological Methods, 7:147-177, 2002.
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.