-
1
-
-
0004093524
-
-
Sage Pub, Thousand Oaks, CA
-
P.D. Allison. Missing data. Sage Pub., Thousand Oaks, CA, 2002.
-
(2002)
Missing data
-
-
Allison, P.D.1
-
2
-
-
0142216643
-
Prognosis in node-negative primary breast cancer: A neural network analysis of risk profiles using routinely assessed factors
-
E. Biganzoli, P. Boracchi, D. Coradini, M. Daidone, and E. Marubini. Prognosis in node-negative primary breast cancer: a neural network analysis of risk profiles using routinely assessed factors. Ann Oncol, 14:1484-1493, 2003.
-
(2003)
Ann Oncol
, vol.14
, pp. 1484-1493
-
-
Biganzoli, E.1
Boracchi, P.2
Coradini, D.3
Daidone, M.4
Marubini, E.5
-
3
-
-
0031921607
-
Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
-
E. Biganzoli, P. Boracchi, L. Mariani, and E. Marubini. Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach. Stat Med, 17:1169-1186, 1998.
-
(1998)
Stat Med
, vol.17
, pp. 1169-1186
-
-
Biganzoli, E.1
Boracchi, P.2
Mariani, L.3
Marubini, E.4
-
4
-
-
0035977415
-
Modelling cause-specific hazards with radial basis function artificial neural networks: Application to 2233 breast cancer patients
-
P. Boracchi, E. Biganzoli, and E. Marubini. Modelling cause-specific hazards with radial basis function artificial neural networks: application to 2233 breast cancer patients. Stat Med, 20:3677-3694, 2001.
-
(2001)
Stat Med
, vol.20
, pp. 3677-3694
-
-
Boracchi, P.1
Biganzoli, E.2
Marubini, E.3
-
5
-
-
0031233464
-
On the use of artificial neural networks for the analysis of survival data
-
S. Brown, A. Branford, and W. Moran. On the use of artificial neural networks for the analysis of survival data. IEEE Trans Neu Net, 8:1071 -1077, 1997.
-
(1997)
IEEE Trans Neu Net
, vol.8
, pp. 1071-1077
-
-
Brown, S.1
Branford, A.2
Moran, W.3
-
6
-
-
0031047117
-
Artificial neural networks improve the accuracy of cancer survival prediction
-
H. Burke, P. Goodman, D. Rosen, D. Henson, J. Weinstein, F. Harrel, J. Marks, D. Winchester, and D. Bostwick. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer, 79, 1997.
-
(1997)
Cancer
, vol.79
-
-
Burke, H.1
Goodman, P.2
Rosen, D.3
Henson, D.4
Weinstein, J.5
Harrel, F.6
Marks, J.7
Winchester, D.8
Bostwick, D.9
-
7
-
-
0000336139
-
Regression models and life tables
-
D. Cox. Regression models and life tables. J R Stat Soc, 34:187-202, 1972.
-
(1972)
J R Stat Soc
, vol.34
, pp. 187-202
-
-
Cox, D.1
-
8
-
-
0033375308
-
A prognostic model that makes quantitative estimates of probability of relapse for breast cancer patients
-
M. De Laurentis, S. De Placido, A. Bianco, G. Clark, and P. Ravdin. A prognostic model that makes quantitative estimates of probability of relapse for breast cancer patients. Clin Cancer Res, 5:4133-4139, 1999.
-
(1999)
Clin Cancer Res
, vol.5
, pp. 4133-4139
-
-
De Laurentis, M.1
De Placido, S.2
Bianco, A.3
Clark, G.4
Ravdin, P.5
-
9
-
-
0028328448
-
A technique for using neural network analysis to perform survival analysis of censored data
-
M. De Laurentis and P. Ravdin. A technique for using neural network analysis to perform survival analysis of censored data. Cancer Lett, 77:127-138, 1994.
-
(1994)
Cancer Lett
, vol.77
, pp. 127-138
-
-
De Laurentis, M.1
Ravdin, P.2
-
10
-
-
0043126911
-
Logistic regression and artificial neural network classification models: A methodology review
-
S. Dreiseitl and L. Ohno-Machado. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inf, 35:352-359, 2002.
-
(2002)
J Biomed Inf
, vol.35
, pp. 352-359
-
-
Dreiseitl, S.1
Ohno-Machado, L.2
-
13
-
-
0031487090
-
Bayesian neural network models for censored data
-
D. Faraggi, R. Simon, E. Yaskil, and A. Kramar. Bayesian neural network models for censored data. Biometrica J., 5:519-532, 1997.
-
(1997)
Biometrica J
, vol.5
, pp. 519-532
-
-
Faraggi, D.1
Simon, R.2
Yaskil, E.3
Kramar, A.4
-
15
-
-
0020083498
-
The meaning and use of the area under the receiver operating characteristic (roc) curve
-
J. Hanley and B. McNeil. The meaning and use of the area under the receiver operating characteristic (roc) curve. Radiology, 143:29-36, 1982.
-
(1982)
Radiology
, vol.143
, pp. 29-36
-
-
Hanley, J.1
McNeil, B.2
-
16
-
-
14944360441
-
Missing-data methods for generalised linear models: A comparative review
-
J.G. Ibrahim, M.H. Chen, and S.R. Herring. Missing-data methods for generalised linear models: A comparative review. J Am Stat Assoc, 100(469):332-326, 2005.
-
(2005)
J Am Stat Assoc
, vol.100
, Issue.469
, pp. 332-326
-
-
Ibrahim, J.G.1
Chen, M.H.2
Herring, S.R.3
-
17
-
-
1842856149
-
A combined neural network and decision trees model for prognosis of breast cancer relapse
-
J. Jerez, J. Górnez, G. Ramos, J. Muñoz, and E. Alba. A combined neural network and decision trees model for prognosis of breast cancer relapse. Artif Intell Med, 27:45-63, 2003.
-
(2003)
Artif Intell Med
, vol.27
, pp. 45-63
-
-
Jerez, J.1
Górnez, J.2
Ramos, G.3
Muñoz, J.4
Alba, E.5
-
18
-
-
27944509655
-
Improvement of breast cancer relapse prediction in high risk intervals using artificial neural networks
-
in press
-
J.M. Jerez, L. Franco, E. Alba, A. Llombart-Cussac, A. Lluch, N. Ribelles, B. Munrriz, and M. Martn. Improvement of breast cancer relapse prediction in high risk intervals using artificial neural networks. Br Can Res Tr, in press, 2005.
-
(2005)
Br Can Res Tr
-
-
Jerez, J.M.1
Franco, L.2
Alba, E.3
Llombart-Cussac, A.4
Lluch, A.5
Ribelles, N.6
Munrriz, B.7
Martn, M.8
-
19
-
-
84928850463
-
Effect on secondary data analysis of common imputation methods
-
J.H. Jihn and J. Sedransk. Effect on secondary data analysis of common imputation methods. Soc Method, 19:213-241, 1989.
-
(1989)
Soc Method
, vol.19
, pp. 213-241
-
-
Jihn, J.H.1
Sedransk, J.2
-
22
-
-
0037114493
-
Updating of covariates and choice of time origin in survival analysis: Problems with vaguely defined disease states
-
K. Liestol and P. Andersen. Updating of covariates and choice of time origin in survival analysis: problems with vaguely defined disease states. Stat Med, 21:3701-3714, 2002.
-
(2002)
Stat Med
, vol.21
, pp. 3701-3714
-
-
Liestol, K.1
Andersen, P.2
-
23
-
-
0003496949
-
-
John Wiley & Sons, Inc, New York, NY, USA
-
R.J. Little and D.B. Rubin. Statistical analysis with missing data. John Wiley & Sons, Inc., New York, NY, USA, 2002.
-
(2002)
Statistical analysis with missing data
-
-
Little, R.J.1
Rubin, D.B.2
-
24
-
-
0032730109
-
Artificial neural networks applied to survival prediction in breast cancer
-
M. Lundin, J. Lundin, H. Burke, S. Toikkanen, Pylkken, and H. Joensuu. Artificial neural networks applied to survival prediction in breast cancer. Oncology, 57:281-286, 1999.
-
(1999)
Oncology
, vol.57
, pp. 281-286
-
-
Lundin, M.1
Lundin, J.2
Burke, H.3
Toikkanen, S.4
Pylkken5
Joensuu, H.6
-
25
-
-
16344379897
-
Partial identification with missing data: Concepts and findings
-
C. Manski. Partial identification with missing data: concepts and findings. Int J Aprox Rea, 39(2-3): 151-165, 2005.
-
(2005)
Int J Aprox Rea
, vol.39
, Issue.2-3
, pp. 151-165
-
-
Manski, C.1
-
26
-
-
0030938915
-
A comparison of cox proportional hazards and artificial neural network models for medical prognosis
-
L. Ohno-Machado. A comparison of cox proportional hazards and artificial neural network models for medical prognosis. Comput Biol Med, 27:55-65, 1997.
-
(1997)
Comput Biol Med
, vol.27
, pp. 55-65
-
-
Ohno-Machado, L.1
-
27
-
-
28444445926
-
-
R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0
-
R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2005. ISBN 3-900051-07-0.
-
(2005)
R: A Language and Environment for Statistical Computing
-
-
-
28
-
-
0026794564
-
A practical application of neural network analysis for predicting outcome of individual breast cancer patients
-
P. Ravdin and G. Clark. A practical application of neural network analysis for predicting outcome of individual breast cancer patients. Breast Cancer Res Treat, 22:285-293, 1992.
-
(1992)
Breast Cancer Res Treat
, vol.22
, pp. 285-293
-
-
Ravdin, P.1
Clark, G.2
-
29
-
-
0032261833
-
Neural network models for breast cancer prognosis
-
R. Ripley, A. Harris, and L. Tarassenko. Neural network models for breast cancer prognosis. Neural Comput. Appl., 7:367-375, 1998.
-
(1998)
Neural Comput. Appl
, vol.7
, pp. 367-375
-
-
Ripley, R.1
Harris, A.2
Tarassenko, L.3
-
30
-
-
0030539070
-
Multiple imputation after +18 years
-
D. Rubin. Multiple imputation after +18 years. J Am Stat Assoc, 91:473-489, 1996.
-
(1996)
J Am Stat Assoc
, vol.91
, pp. 473-489
-
-
Rubin, D.1
-
32
-
-
33847208354
-
-
Chapman and Hall, New York
-
J.L. Schafer. Missing data. Chapman and Hall, New York, 1997.
-
(1997)
Missing data
-
-
Schafer, J.L.1
-
33
-
-
85047673373
-
Missing data: Our view of the state of the art
-
J.L. Schafer and J.W. Graham. Missing data: Our view of the state of the art. Psychological Methods, 7:147-177, 2002.
-
(2002)
Psychological Methods
, vol.7
, pp. 147-177
-
-
Schafer, J.L.1
Graham, J.W.2
|