메뉴 건너뛰기




Volumn 36, Issue 5, 2006, Pages 516-525

Impact of missing data in evaluating artificial neural networks trained on complete data

Author keywords

Breast neoplasms; Computer assisted; Diagnosis; Mammography

Indexed keywords

BREAST NEOPLASMS; COMPUTER-ASSISTED;

EID: 33646470217     PISSN: 00104825     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2005.02.001     Document Type: Article
Times cited : (35)

References (19)
  • 1
    • 33646472338 scopus 로고    scopus 로고
    • American Cancer Society, Cancer Facts and Figures 2004, American Cancer Society, Atlanta, 2004.
  • 2
    • 0036062795 scopus 로고    scopus 로고
    • Screening mammography: proven benefit, continued controversy
    • Lee C.H. Screening mammography: proven benefit, continued controversy. Radiol. clin. N. Am. 40 (2002) 395-407
    • (2002) Radiol. clin. N. Am. , vol.40 , pp. 395-407
    • Lee, C.H.1
  • 3
    • 0001397622 scopus 로고    scopus 로고
    • Computer-aided diagnosis of breast lesions in medical images
    • Giger M.L. Computer-aided diagnosis of breast lesions in medical images. Comput. Sci. Eng. 2 (2000) 39-45
    • (2000) Comput. Sci. Eng. , vol.2 , pp. 39-45
    • Giger, M.L.1
  • 5
    • 0033903208 scopus 로고    scopus 로고
    • Computer-aided detection and diagnosis of breast cancer
    • Vyborny C.J., Giger M.L., and Nishikawa R.M. Computer-aided detection and diagnosis of breast cancer. Radiol. Clin. N. Am. 38 (2000) 725-740
    • (2000) Radiol. Clin. N. Am. , vol.38 , pp. 725-740
    • Vyborny, C.J.1    Giger, M.L.2    Nishikawa, R.M.3
  • 6
    • 0027512684 scopus 로고
    • Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer
    • Wu Y., Giger M.L., Doi K., Vyborny C.J., Schmidt R.A., and Metz C.E. Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer. Radiology 187 (1993) 81-87
    • (1993) Radiology , vol.187 , pp. 81-87
    • Wu, Y.1    Giger, M.L.2    Doi, K.3    Vyborny, C.J.4    Schmidt, R.A.5    Metz, C.E.6
  • 7
    • 0030982828 scopus 로고    scopus 로고
    • Construction of a Bayesian network for mammographic diagnosis of breast cancer
    • Kahn Jr. C.E., Roberts L.M., Shaffer K.A., and Haddawy P. Construction of a Bayesian network for mammographic diagnosis of breast cancer. Comput. Biol. Med. 27 (1997) 19-29
    • (1997) Comput. Biol. Med. , vol.27 , pp. 19-29
    • Kahn Jr., C.E.1    Roberts, L.M.2    Shaffer, K.A.3    Haddawy, P.4
  • 8
    • 0033754933 scopus 로고    scopus 로고
    • Case-based reasoning computer algorithm that uses mammographic findings for breast biopsy decisions
    • Floyd Jr. C.E., Lo J.Y., and Tourassi G.D. Case-based reasoning computer algorithm that uses mammographic findings for breast biopsy decisions. Am. J. Roentgenol. 175 (2000) 1347-1352
    • (2000) Am. J. Roentgenol. , vol.175 , pp. 1347-1352
    • Floyd Jr., C.E.1    Lo, J.Y.2    Tourassi, G.D.3
  • 9
    • 0030048533 scopus 로고    scopus 로고
    • Artificial neural network: improving the quality of breast biopsy recommendations
    • Baker J.A., Kornguth P.J., Lo J.Y., and Floyd Jr. C.E. Artificial neural network: improving the quality of breast biopsy recommendations. Radiology 198 (1996) 131-135
    • (1996) Radiology , vol.198 , pp. 131-135
    • Baker, J.A.1    Kornguth, P.J.2    Lo, J.Y.3    Floyd Jr., C.E.4
  • 10
    • 0035006815 scopus 로고    scopus 로고
    • A neural network approach to breast cancer diagnosis as a constraint satisfaction problem
    • Tourassi G.D., Markey M.K., Lo J.Y., and Floyd Jr. C.E. A neural network approach to breast cancer diagnosis as a constraint satisfaction problem. Med. Phys. 28 (2001) 804-811
    • (2001) Med. Phys. , vol.28 , pp. 804-811
    • Tourassi, G.D.1    Markey, M.K.2    Lo, J.Y.3    Floyd Jr., C.E.4
  • 11
    • 33646470777 scopus 로고    scopus 로고
    • TM), American College of Radiology, Reston, VA, 1998.
  • 13
    • 0037291502 scopus 로고    scopus 로고
    • Self-organizing map for cluster analysis of a breast cancer database
    • Markey M.K., Lo J.Y., Tourassi G.D., and Floyd Jr. C.E. Self-organizing map for cluster analysis of a breast cancer database. Artif. Intell. Med. 27 (2003) 113-127
    • (2003) Artif. Intell. Med. , vol.27 , pp. 113-127
    • Markey, M.K.1    Lo, J.Y.2    Tourassi, G.D.3    Floyd Jr., C.E.4
  • 14
    • 0032920606 scopus 로고    scopus 로고
    • Effect of patient history data on the prediction of breast cancer from mammographic findings with artificial neural networks
    • Lo J.Y., Baker J.A., Kornguth P.J., and Floyd Jr. C.E. Effect of patient history data on the prediction of breast cancer from mammographic findings with artificial neural networks. Acad. Radiol. 6 (1999) 10-15
    • (1999) Acad. Radiol. , vol.6 , pp. 10-15
    • Lo, J.Y.1    Baker, J.A.2    Kornguth, P.J.3    Floyd Jr., C.E.4
  • 17
    • 0041374159 scopus 로고    scopus 로고
    • G.D. Tourassi, M.K. Markey, J.Y. Lo, Validation of a constraint satisfaction neural network for breast cancer diagnosis: new results from 1030 cases, in: M. Sonka, J.M. Fitzpatrick (Eds.), Medical Imaging 2003: Image Processing, Proceedings of the SPIE 5032, San Diego, 2003, pp. 207-214.
  • 18
    • 0018079655 scopus 로고
    • Basic principles of ROC analysis
    • Metz C.E. Basic principles of ROC analysis. Semin. Nucl. Med. 8 (1978) 283-298
    • (1978) Semin. Nucl. Med. , vol.8 , pp. 283-298
    • Metz, C.E.1
  • 19
    • 0022470978 scopus 로고
    • ROC methodology in radiologic imaging
    • Metz C.E. ROC methodology in radiologic imaging. Invest. Radiol. 21 (1986) 720-733
    • (1986) Invest. Radiol. , vol.21 , pp. 720-733
    • Metz, C.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.