메뉴 건너뛰기




Volumn 37, Issue 3, 2007, Pages 415-423

A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis

Author keywords

Artificial immune systems; Breast cancer diagnosis; Fuzzy weighting; k Fold cross validation; k Nearest neighbour classification system; Wisconsin Breast Cancer Diagnosis Data

Indexed keywords

ALGORITHMS; DISEASES; FUZZY SETS; IMMUNOLOGY; LEARNING SYSTEMS; ONCOLOGY; TUMORS;

EID: 33846014233     PISSN: 00104825     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2006.05.003     Document Type: Article
Times cited : (169)

References (21)
  • 1
    • 33845974958 scopus 로고    scopus 로고
    • 〈http://caonline.amcancersoc.org/cgi/content/full/55/2/74〉 (last accessed: 25 April 2005).
  • 2
    • 9644288159 scopus 로고    scopus 로고
    • Ensemble strategies for a medical diagnosis decision support system: a breast cancer diagnosis application
    • West D., Mangiameli P., Rampal R., and West V. Ensemble strategies for a medical diagnosis decision support system: a breast cancer diagnosis application. Eur. J. Oper. Res. 162 (2005) 532-551
    • (2005) Eur. J. Oper. Res. , vol.162 , pp. 532-551
    • West, D.1    Mangiameli, P.2    Rampal, R.3    West, V.4
  • 3
    • 33845975698 scopus 로고    scopus 로고
    • 〈ftp://ftp.ics.uci.edu/pub/machine-learning-databases〉 (last accessed: 7 April 2005).
  • 5
    • 33845968909 scopus 로고    scopus 로고
    • T. Ki{dotless}ryan, T. Yi{dotless}ldi{dotless}ri{dotless}m, Breast cancer diagnosis using statistical neural networks, XII. TAINN Symposium Proceedings, E(8): 754, Çanakkale, Turkey, 2003.
  • 6
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer diagnosis
    • Setiono R. Generating concise and accurate classification rules for breast cancer diagnosis. Artif. Intell. Med. 18 (2000) 205-219
    • (2000) Artif. Intell. Med. , vol.18 , pp. 205-219
    • Setiono, R.1
  • 7
    • 0029678894 scopus 로고    scopus 로고
    • Improved use of continuous attributes in C4.5
    • Quinlan J.R. Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 4 (1996) 77-90
    • (1996) J. Artif. Intell. Res. , vol.4 , pp. 77-90
    • Quinlan, J.R.1
  • 8
    • 33846011489 scopus 로고    scopus 로고
    • H.J. Hamilton, N. Shan, N. Cercone, RIAC: a rule induction algorithm based on approximate classification, Technical Report CS 96-06, University of Regina, 1996.
  • 9
    • 33845967170 scopus 로고    scopus 로고
    • B. Ster, A. Dobnikar, Neural networks in medical diagnosis: comparison with other methods, in: Proceedings of the International Conference on Engineering Applications of Neural Networks (EANN '96), 1996, pp. 427-430.
  • 10
    • 33845980646 scopus 로고    scopus 로고
    • K.P. Bennet, J.A. Blue, A support vector machine approach to decision trees, Math Report, vols. 97-100, Rensselaer Polytechnic Institute, 1997.
  • 11
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • Nauck D., and Kruse R. Obtaining interpretable fuzzy classification rules from medical data. Artif. Intell. Med. 16 (1999) 149-169
    • (1999) Artif. Intell. Med. , vol.16 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 12
    • 0344466786 scopus 로고    scopus 로고
    • A fuzzy-genetic approach to breast cancer diagnosis
    • Pena-Reyes C.A., and Sipper M. A fuzzy-genetic approach to breast cancer diagnosis. Artif. Intell. Med. 17 (1999) 131-155
    • (1999) Artif. Intell. Med. , vol.17 , pp. 131-155
    • Pena-Reyes, C.A.1    Sipper, M.2
  • 13
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer diagnosis
    • Setiono R. Generating concise and accurate classification rules for breast cancer diagnosis. Artif. Intell. Med. 18 (2000) 205-219
    • (2000) Artif. Intell. Med. , vol.18 , pp. 205-219
    • Setiono, R.1
  • 14
    • 0037004445 scopus 로고    scopus 로고
    • D.E. Goodman, L. Boggess, A. Watkins, Artificial immune system classification of multiple-class problems, in: Proceedings of the Artificial Neural Networks in Engineering ANNIE (2002), 2002, pp. 179-183.
  • 15
    • 0041339769 scopus 로고    scopus 로고
    • Supervised fuzzy clustering for the identification of fuzzy classifiers
    • Abonyi J., and Szeifert F. Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognition Lett. 24 (2003) 2195-2207
    • (2003) Pattern Recognition Lett. , vol.24 , pp. 2195-2207
    • Abonyi, J.1    Szeifert, F.2
  • 16
    • 33845968558 scopus 로고    scopus 로고
    • L.N. De Castro, J. Timmis, Artificial Immune Systems: A New Computational Intelligence Approach, Springer, UK, 2002.
  • 17
    • 33846022420 scopus 로고    scopus 로고
    • A.K. Abbas, A.H. Lichtman, Cellular and Molecular Immunology, fifth ed., W.B. Saunders Company, 2003.
  • 18
    • 0018567632 scopus 로고
    • Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-nonself discrimination
    • Perelson A.S., and Oster G.F. Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-nonself discrimination. J. Theoret. Biol. 81 (1979) 645-670
    • (1979) J. Theoret. Biol. , vol.81 , pp. 645-670
    • Perelson, A.S.1    Oster, G.F.2
  • 19
    • 33846002432 scopus 로고    scopus 로고
    • T.M. Mitchell, Machine Learning, The McGraw-Hill Companies Press, 1997.
  • 20
    • 33846022026 scopus 로고    scopus 로고
    • A. Watkins, AIRS: A resource limited artificial immune classifier, Master Thesis, Mississippi State University, 2001.
  • 21
    • 19344364327 scopus 로고    scopus 로고
    • D. Delen, G. Walker, A. Kadam, Predicting breast cancer survivability: a comparison of three data mining methods, Artif. Intell. Med. 2004, 34 (2) (2005) 113-127.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.