-
1
-
-
0026808390
-
The Nottingham Prognostic Index in primary breast cancer
-
Galea M., Blamey R., Elston C., Ellis I. The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Res Treat 1992, 22:207-219.
-
(1992)
Breast Cancer Res Treat
, vol.22
, pp. 207-219
-
-
Galea, M.1
Blamey, R.2
Elston, C.3
Ellis, I.4
-
2
-
-
33644836410
-
Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the international ovarian tumor analysis group
-
Timmerman D., Testa A.C., Bourne T., Ferrazzi E., Ameye L., Konstantinovic M., et al. Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the international ovarian tumor analysis group. J Clin Oncol 2005, 23:8794-8801.
-
(2005)
J Clin Oncol
, vol.23
, pp. 8794-8801
-
-
Timmerman, D.1
Testa, A.C.2
Bourne, T.3
Ferrazzi, E.4
Ameye, L.5
Konstantinovic, M.6
-
3
-
-
68349126950
-
Microarray-based gene expression profiling as a clinical tool for breast cancer management: are we there yet?
-
Geyer F.C., Reis-Filho J.S. Microarray-based gene expression profiling as a clinical tool for breast cancer management: are we there yet?. Int J Surg Pathol 2009, 17:285-302.
-
(2009)
Int J Surg Pathol
, vol.17
, pp. 285-302
-
-
Geyer, F.C.1
Reis-Filho, J.S.2
-
4
-
-
39149123547
-
Clinical application of the 70-gene profile: the MINDACT trial
-
Cardoso F., van't Veer L., Rutgers E., Loi S., Mook S., Piccart-Gebhart M.J. Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol 2008, 26:729-735.
-
(2008)
J Clin Oncol
, vol.26
, pp. 729-735
-
-
Cardoso, F.1
van't Veer, L.2
Rutgers, E.3
Loi, S.4
Mook, S.5
Piccart-Gebhart, M.J.6
-
5
-
-
33750895236
-
TAILORx: trial assigning individualized options for treatment (Rx)
-
Sparano J.A. TAILORx: trial assigning individualized options for treatment (Rx). Clin Breast Cancer 2006, 7:347-350.
-
(2006)
Clin Breast Cancer
, vol.7
, pp. 347-350
-
-
Sparano, J.A.1
-
6
-
-
3843116922
-
Good old" clinical markers have similar power in breast cancer prognosis as microarray gene expression profilers
-
Edén P., Ritz C., Rose C., Fernö M., Peterson C. Good old" clinical markers have similar power in breast cancer prognosis as microarray gene expression profilers. Eur J Can 2004, 40:1837-1841.
-
(2004)
Eur J Can
, vol.40
, pp. 1837-1841
-
-
Edén, P.1
Ritz, C.2
Rose, C.3
Fernö, M.4
Peterson, C.5
-
7
-
-
0043166415
-
Preoperative prediction of malignancy of ovarium tumor using least squares support vector machines
-
Lu C., Van Gestel T., Suykens J.A.K., Van Huffel S., Vergote I., Timmerman D. Preoperative prediction of malignancy of ovarium tumor using least squares support vector machines. Artif Intell Med 2003, 28:281-306.
-
(2003)
Artif Intell Med
, vol.28
, pp. 281-306
-
-
Lu, C.1
Van Gestel, T.2
Suykens, J.A.K.3
Van Huffel, S.4
Vergote, I.5
Timmerman, D.6
-
8
-
-
26244431764
-
Multidimensional pattern recognition and classification of white blood cells using support vector machines
-
Adjouadi M., Zong N., Ayala M. Multidimensional pattern recognition and classification of white blood cells using support vector machines. Part Part Syst Charact 2005, 22:107-118.
-
(2005)
Part Part Syst Charact
, vol.22
, pp. 107-118
-
-
Adjouadi, M.1
Zong, N.2
Ayala, M.3
-
9
-
-
17744369892
-
Relevance vector machine for optical diagnosis of cancer
-
Majumder S.K., Ghosh N., Gupta P.K. Relevance vector machine for optical diagnosis of cancer. Lasers Surg Med 2005, 36:323-333.
-
(2005)
Lasers Surg Med
, vol.36
, pp. 323-333
-
-
Majumder, S.K.1
Ghosh, N.2
Gupta, P.K.3
-
10
-
-
34249740082
-
Preoperative diagnosis of ovarian tumors using Bayesian kernel-based methods
-
Van Calster B., Timmerman D., Lu C., Suykens J.A.K., Valentin L., Van Holsbeke C., et al. Preoperative diagnosis of ovarian tumors using Bayesian kernel-based methods. Ultrasound Obstet Gynecol 2007, 29:496-504.
-
(2007)
Ultrasound Obstet Gynecol
, vol.29
, pp. 496-504
-
-
Van Calster, B.1
Timmerman, D.2
Lu, C.3
Suykens, J.A.K.4
Valentin, L.5
Van Holsbeke, C.6
-
12
-
-
4444288656
-
Kernels and distances for structured data
-
Gärtner T., Lloyd J.W., Flach P.A. Kernels and distances for structured data. Mach Learn 2004, 57:205-232.
-
(2004)
Mach Learn
, vol.57
, pp. 205-232
-
-
Gärtner, T.1
Lloyd, J.W.2
Flach, P.A.3
-
13
-
-
2642567971
-
LS-SVMlab: a Matlab/C toolbox for Least Squares Support Vector Machines
-
[accessed 18.04.11].
-
Pelckmans K, Suykens JAK, Van Gestel T, De Brabanter J, Lukas L, Hamers B, et al. LS-SVMlab: a Matlab/C toolbox for Least Squares Support Vector Machines. [accessed 18.04.11]. http://www.esat.kuleuven.be/sista/lssvmlab/.
-
-
-
Pelckmans, K.1
Suykens, J.A.K.2
Van Gestel, T.3
De Brabanter, J.4
Lukas, L.5
Hamers, B.6
-
16
-
-
84878078886
-
An experimental investigation of graph kernels on a collaborative recommendation task
-
Fouss F., Francoisse K., Yen L., Pirotte A., Saerens M. An experimental investigation of graph kernels on a collaborative recommendation task. Proc of Int Conf on Data Mining (ICDM) 2006, 863-868.
-
(2006)
Proc of Int Conf on Data Mining (ICDM)
, pp. 863-868
-
-
Fouss, F.1
Francoisse, K.2
Yen, L.3
Pirotte, A.4
Saerens, M.5
-
17
-
-
77956616296
-
Complex system fault diagnosis based on a fuzzy robust wavelet support vector classifier and an adaptive Gaussian particle swarm optimization
-
Wu Q., Law R. Complex system fault diagnosis based on a fuzzy robust wavelet support vector classifier and an adaptive Gaussian particle swarm optimization. Inf Sci 2010, 180:4514-4528.
-
(2010)
Inf Sci
, vol.180
, pp. 4514-4528
-
-
Wu, Q.1
Law, R.2
-
18
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett 1999, 9:293-300.
-
(1999)
Neural Process Lett
, vol.9
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
19
-
-
0037695279
-
-
World Scientific, Singapore
-
Suykens J.A.K., Van Gestel T., De Brabanter J., De Moor B., Vandewalle J. Least squares support vector machines 2002, World Scientific, Singapore.
-
(2002)
Least squares support vector machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
20
-
-
40649116219
-
Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs
-
Cawley G.C. Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs. Proc. of IJCNN 2006, 1661-1668.
-
(2006)
Proc. of IJCNN
, pp. 1661-1668
-
-
Cawley, G.C.1
-
22
-
-
70449481151
-
A kernel-based integration of genome-wide data for clinical decision support
-
Daemen A., Gevaert O., Ojeda F., Debucquoy A., Suykens J.A.K., Sempoux C., et al. A kernel-based integration of genome-wide data for clinical decision support. Genome Med 2009, 1:39.
-
(2009)
Genome Med
, vol.1
, pp. 39
-
-
Daemen, A.1
Gevaert, O.2
Ojeda, F.3
Debucquoy, A.4
Suykens, J.A.K.5
Sempoux, C.6
-
23
-
-
0017109036
-
Multivariate binary discrimination by the kernel method
-
Aitchison J., Aitken C.G.G. Multivariate binary discrimination by the kernel method. Biometrika 1976, 63:413-420.
-
(1976)
Biometrika
, vol.63
, pp. 413-420
-
-
Aitchison, J.1
Aitken, C.G.G.2
-
24
-
-
54849435465
-
Mathematical decision trees versus clinician based algorithms in the diagnosis of endometrial disease
-
Van den Bosch T., Daemen A., Gevaert O., Timmerman D. Mathematical decision trees versus clinician based algorithms in the diagnosis of endometrial disease. Ultrasound Obstet Gynecol 2007, 30:412.
-
(2007)
Ultrasound Obstet Gynecol
, vol.30
, pp. 412
-
-
Van den Bosch, T.1
Daemen, A.2
Gevaert, O.3
Timmerman, D.4
-
25
-
-
58449122569
-
Functional linear discriminant analysis: a new longitudinal approach to the assessment of embryonic growth
-
Bottomley C., Daemen A., Mukri F., Papageorghiou A.T., Kirk E., Pexsters A., et al. Functional linear discriminant analysis: a new longitudinal approach to the assessment of embryonic growth. Hum Reprod 2009, 24:278-283.
-
(2009)
Hum Reprod
, vol.24
, pp. 278-283
-
-
Bottomley, C.1
Daemen, A.2
Mukri, F.3
Papageorghiou, A.T.4
Kirk, E.5
Pexsters, A.6
-
26
-
-
33745812835
-
Predicting the outcome of pregnancies of unknown location: Bayesian networks with expert prior information compared to logistic regression
-
Gevaert O., De Smet F., Kirk E., Van Calster B., Bourne T., Van Huffel S., et al. Predicting the outcome of pregnancies of unknown location: Bayesian networks with expert prior information compared to logistic regression. Hum Reprod 2006, 21:1824-1831.
-
(2006)
Hum Reprod
, vol.21
, pp. 1824-1831
-
-
Gevaert, O.1
De Smet, F.2
Kirk, E.3
Van Calster, B.4
Bourne, T.5
Van Huffel, S.6
-
27
-
-
4344573702
-
The use of a new logistic regression model for predicting the outcome of pregnancies of unknown location
-
Condous G., Okaro E., Khalid A., Timmerman D., Lu C., Zhou Y., et al. The use of a new logistic regression model for predicting the outcome of pregnancies of unknown location. Hum Reprod 2004, 19:1900-1910.
-
(2004)
Hum Reprod
, vol.19
, pp. 1900-1910
-
-
Condous, G.1
Okaro, E.2
Khalid, A.3
Timmerman, D.4
Lu, C.5
Zhou, Y.6
-
28
-
-
59449107079
-
Prospective internal validation of mathematical models to predict malignancy in adnexal masses: results from the international ovarian tumor analysis study
-
Van Holsbeke C., Van Calster B., Testa A.C., Domali E., Lu C., Van Huffel S., et al. Prospective internal validation of mathematical models to predict malignancy in adnexal masses: results from the international ovarian tumor analysis study. Clin Cancer Res 2009, 15:684-691.
-
(2009)
Clin Cancer Res
, vol.15
, pp. 684-691
-
-
Van Holsbeke, C.1
Van Calster, B.2
Testa, A.C.3
Domali, E.4
Lu, C.5
Van Huffel, S.6
-
29
-
-
29144535372
-
Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data
-
Dai M., Wang P., Boyd A.D., Kostov G., Athey B., Jones E.G., et al. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 2005, 33:e175.
-
(2005)
Nucleic Acids Res
, vol.33
-
-
Dai, M.1
Wang, P.2
Boyd, A.D.3
Kostov, G.4
Athey, B.5
Jones, E.G.6
-
30
-
-
33845191779
-
Genomic and transcriptional aberrations linked to breast cancer pathophysiologies
-
Chin K., DeVries S., Fridlyand J., Spellman P.T., Roydasgupta R., Kuo W.L., et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 2006, 10:529-541.
-
(2006)
Cancer Cell
, vol.10
, pp. 529-541
-
-
Chin, K.1
DeVries, S.2
Fridlyand, J.3
Spellman, P.T.4
Roydasgupta, R.5
Kuo, W.L.6
-
31
-
-
33749030177
-
Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer
-
Hess K.R., Anderson K., Symmans W.F., Valero V., Ibrahim N., Mejia J.A., et al. Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol 2006, 24:4236-4244.
-
(2006)
J Clin Oncol
, vol.24
, pp. 4236-4244
-
-
Hess, K.R.1
Anderson, K.2
Symmans, W.F.3
Valero, V.4
Ibrahim, N.5
Mejia, J.A.6
-
32
-
-
33144462268
-
Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis
-
Sotiriou C., Wirapati P., Loi S., Harris A., Fox S., Smeds J., et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 2006, 98:262-272.
-
(2006)
J Natl Cancer Inst
, vol.98
, pp. 262-272
-
-
Sotiriou, C.1
Wirapati, P.2
Loi, S.3
Harris, A.4
Fox, S.5
Smeds, J.6
-
33
-
-
0034602774
-
Knowledge-based analysis of microarray gene expression data by using support vector machines
-
Brown M.P.S., Grundy W.N., Lin D., Cristianini N., Sugnet C.W., Furey T.S., et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA 2000, 97:262-267.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 262-267
-
-
Brown, M.P.S.1
Grundy, W.N.2
Lin, D.3
Cristianini, N.4
Sugnet, C.W.5
Furey, T.S.6
-
34
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
Furey T.S., Cristianini N., Duffy N., Bednarski D.W., Schummer M., Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16:906-914.
-
(2000)
Bioinformatics
, vol.16
, pp. 906-914
-
-
Furey, T.S.1
Cristianini, N.2
Duffy, N.3
Bednarski, D.W.4
Schummer, M.5
Haussler, D.6
-
35
-
-
0035184851
-
Biomarker identification by feature wrappers
-
Xiong M., Fang X., Zhao J. Biomarker identification by feature wrappers. Genome Res 2001, 11:1878-1887.
-
(2001)
Genome Res
, vol.11
, pp. 1878-1887
-
-
Xiong, M.1
Fang, X.2
Zhao, J.3
-
36
-
-
0242288903
-
Benchmarking least squares support vector machine classifiers
-
Van Gestel T., Suykens J.A.K., Baesens B., Viaene S., Vanthienen J., Dedene G., et al. Benchmarking least squares support vector machine classifiers. Mach Learn 2004, 54:5-32.
-
(2004)
Mach Learn
, vol.54
, pp. 5-32
-
-
Van Gestel, T.1
Suykens, J.A.K.2
Baesens, B.3
Viaene, S.4
Vanthienen, J.5
Dedene, G.6
-
37
-
-
58149410197
-
Estimating coefficients in linear models: it don't make no nevermind
-
Wainer H. Estimating coefficients in linear models: it don't make no nevermind. Psychol Bull 1976, 83:213-217.
-
(1976)
Psychol Bull
, vol.83
, pp. 213-217
-
-
Wainer, H.1
-
39
-
-
8844263749
-
A statistical framework for genomic data fusion
-
Lanckriet G.R.G., De Bie T., Cristianini N., Jordan M.I., Noble W.S. A statistical framework for genomic data fusion. Bioinformatics 2004, 20:2626-2635.
-
(2004)
Bioinformatics
, vol.20
, pp. 2626-2635
-
-
Lanckriet, G.R.G.1
De Bie, T.2
Cristianini, N.3
Jordan, M.I.4
Noble, W.S.5
-
40
-
-
0037137519
-
A gene-expression signature as a predictor of survival in breast cancer
-
van de Vijver M., He Y., van't Veer L., Dai H., Hart A., Voskuil D., et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002, 347:1999-2009.
-
(2002)
N Engl J Med
, vol.347
, pp. 1999-2009
-
-
van de Vijver, M.1
He, Y.2
van't Veer, L.3
Dai, H.4
Hart, A.5
Voskuil, D.6
-
41
-
-
20144386127
-
Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival
-
Chang H., Nuyten D., Sneddon J., Hastie T., Tibshirani R., Sorlie T., et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci USA 2005, 102:3738-3743.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 3738-3743
-
-
Chang, H.1
Nuyten, D.2
Sneddon, J.3
Hastie, T.4
Tibshirani, R.5
Sorlie, T.6
-
42
-
-
77954853785
-
L2 norm multiple kernel learning and its applications to biomedical data fusion
-
Yu S., Falck T., Daemen A., Tranchevent L.C., Suykens J.A.K., De Moor B., et al. L2 norm multiple kernel learning and its applications to biomedical data fusion. BMC Bioinformatics 2010, 11:309.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 309
-
-
Yu, S.1
Falck, T.2
Daemen, A.3
Tranchevent, L.C.4
Suykens, J.A.K.5
De Moor, B.6
|