메뉴 건너뛰기




Volumn 5, Issue , 2004, Pages 3229-3233

A selective approach to neural network ensemble based on clustering technology

Author keywords

Clustering; Ensemble; Neural network; Selective ensemble; Similarity

Indexed keywords

COMPUTER ARCHITECTURE; COMPUTER SIMULATION; CORRELATION METHODS; DATA ACQUISITION; IMAGE PROCESSING; LEARNING ALGORITHMS; MATHEMATICAL MODELS; OPTIMIZATION; VECTORS;

EID: 6344292247     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (16)

References (20)
  • 4
    • 0032073506 scopus 로고    scopus 로고
    • Classification of seismic signals by integrating ensembles of neural networks
    • Y. Shimshoni, N. Intrator, Classification of seismic signals by integrating ensembles of neural networks, IEEE Trans. Signal Process. 46 (5), pp. 1194-1201, 1998.
    • (1998) IEEE Trans. Signal Process. , vol.46 , Issue.5 , pp. 1194-1201
    • Shimshoni, Y.1    Intrator, N.2
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Machine Learning 24 (2) pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R.E. Schapire, The strength of weak learnability, Machine Learning 5 (2), pp. 197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 7
    • 58149321460 scopus 로고
    • Boosting a weak algorithm by majority
    • Y. Freund, Boosting a weak algorithm by majority, Inform. and Comput. 121 (2), pp. 256-285, 1995.
    • (1995) Inform. and Comput. , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 8
    • 0025449258 scopus 로고
    • A novel objective function for improved phoneme recognition using time-delay neural networks
    • J. Hampshire, A. Waibel, A novel objective function for improved phoneme recognition using time-delay neural networks, IEEE Trans. Neural Networks 1 (2), pp.216-228, 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , Issue.2 , pp. 216-228
    • Hampshire, J.1    Waibel, A.2
  • 9
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • G. Tesauro,D. Touretzky, T. Leen (Eds.), Denver, CO, MIT Press, Cambridge, MA
    • A. Krogh, J. Vedelsby, Neural network ensembles, cross validation, and active learning, in: G. Tesauro,D. Touretzky, T. Leen (Eds.), Advances in Neural Information Processing Systems 7, Denver, CO, MIT Press, Cambridge, MA, pp. 231-238, 1995.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 10
    • 0030356238 scopus 로고    scopus 로고
    • Actively searching for an effective neural network ensemble
    • D.W. Opitz, J.W. Shavlik, Actively searching for an effective neural network ensemble, Connection Science 8 (3-4), pp. 337-353, 1996.
    • (1996) Connection Science , vol.8 , Issue.3-4 , pp. 337-353
    • Opitz, D.W.1    Shavlik, J.W.2
  • 11
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble method for neural networks
    • R.J.Mammone (Ed.), Chapman & Hall, New York
    • M.P. Perrone, L.N. Cooper, When networks disagree: Ensemble method for neural networks, in: R.J.Mammone (Ed.), Artificial Neural Networks for Speech and Vision, Chapman & Hall, New York, pp. 126-142, 1993.
    • (1993) Artificial Neural Networks for Speech and Vision , pp. 126-142
    • Perrone, M.P.1    Cooper, L.N.2
  • 12
    • 0033893813 scopus 로고    scopus 로고
    • Optimal linear combination of neural networks for improving classification performance
    • N. Ueda, Optimal linear combination of neural networks for improving classification performance, IEEE Trans. Pattern Anal. Machine Intelligence 22 (2), pp. 207-215, 2000.
    • (2000) IEEE Trans. Pattern Anal. Machine Intelligence , vol.22 , Issue.2 , pp. 207-215
    • Ueda, N.1
  • 13
    • 0030365938 scopus 로고    scopus 로고
    • Error correlation and error reduction in ensemble classifiers
    • K. Tumer, J.Ghosh. Error correlation and error reduction in ensemble classifiers, Connection Science 8, pp. 385-404, 1996.
    • (1996) Connection Science , vol.8 , pp. 385-404
    • Tumer, K.1    Ghosh, J.2
  • 14
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Zhi-Hua Zhou, Jianxin Wu, Wei Tang, Ensembling neural networks: Many could be better than all, Artificial Intelligence 137, pp. 239-263, 2002.
    • (2002) Artificial Intelligence , vol.137 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 15
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Ludmila I. Kuncheva, Christopher J.Whitaker. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine learning, 51, pp. 181-207, 2003.
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 16
    • 0030111129 scopus 로고    scopus 로고
    • Network generalization differalization difference quantified
    • D. Partridge. Network generalization differalization difference quantified Neural networks 9, pp. 263-271, 1996.
    • (1996) Neural Networks , vol.9 , pp. 263-271
    • Partridge, D.1
  • 17
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Science, University of California, Irvine, CA
    • C. Blake, E. Keogh, C.J. Merz, UCI repository of machine learning databases, Department of Information and Computer Science, University of California, Irvine, CA, 1998, http://www.ics.uci.edu/~mlearn/ MLRepository.htm.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.1    Keogh, E.2    Merz, C.J.3
  • 19
    • 0029360028 scopus 로고
    • On cluster validity for the fuzzy c-means model
    • Aug.
    • Nikhil R. Pal and James C. Bezdek. On cluster validity for the fuzzy c-means model, IEEE Trans. on fuzzy systems, Vol. 3, No. 3, pp. 370-378, Aug. 1995.
    • (1995) IEEE Trans. on Fuzzy Systems , vol.3 , Issue.3 , pp. 370-378
    • Pal, N.R.1    Bezdek, J.C.2
  • 20
    • 6344273454 scopus 로고    scopus 로고
    • The upper bound of the optimal number of clusters in fuzzy clustering
    • Apr.
    • YU jian & ChENG. The upper bound of the optimal number of clusters in fuzzy clustering, Science in china (series F), Vol. 44, No.2, pp. 119-125, Apr. 2001.
    • (2001) Science in China (Series F) , vol.44 , Issue.2 , pp. 119-125
    • Yu, J.1    ChEng2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.