-
3
-
-
15744404857
-
Machine learning methods for fully automatic recognition of facial expressions and facial actions. In: Proceedings of the IEEE international conference systems, man and cybernetics
-
Bartlett MS, Littlewort G, Lainscsek C, Fasel I, Movellan J (2004) Machine learning methods for fully automatic recognition of facial expressions and facial actions. In: Proceedings of the IEEE international conference systems, man and cybernetics, pp 592–597
-
(2004)
pp 592–597
-
-
Bartlett, M.S.1
Littlewort, G.2
Lainscsek, C.3
Fasel, I.4
Movellan, J.5
-
4
-
-
0000275022
-
Prediction games and arcing algorithms
-
Breiman L (1999) Prediction games and arcing algorithms. Neural Comput 11(7):1493–1517. doi:10.1162/089976699300016106
-
(1999)
Neural Comput
, vol.11
, Issue.7
, pp. 1493-1517
-
-
Breiman, L.1
-
5
-
-
0035478854
-
Random forests
-
Breiman L (2001) Random forests. Mach Learn 45(1): 5–32
-
(2001)
Mach Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
7
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167
-
Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167. doi:10.1023/A:1009715923555. http://dl.acm.org/citation.cfm?id=593419.593463
-
(1998)
doi:10.1023/A:1009715923555
-
-
Burges, C.J.C.1
-
8
-
-
33749254096
-
An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on machine learning, pp 161–168
-
Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on machine learning, pp 161–168. doi:10.1145/1143844.1143865
-
(2006)
doi:10.1145/1143844.1143865
-
-
Caruana, R.1
Niculescu-Mizil, A.2
-
9
-
-
56449089785
-
An empirical evaluation of supervised learning in high dimensions. In: Proceedings of the 25th international conference on machine learning, pp 96–103
-
Caruana R, Karampatziakis N, Yessenalina A (2008) An empirical evaluation of supervised learning in high dimensions. In: Proceedings of the 25th international conference on machine learning, pp 96–103. doi:10.1145/1390156.1390169
-
(2008)
doi:10.1145/1390156.1390169
-
-
Caruana, R.1
Karampatziakis, N.2
Yessenalina, A.3
-
10
-
-
78149350199
-
Classification of genomic islands using decision trees and their ensemble algorithms
-
Che D, Hockenbury C, Marmelstein R, Rasheed K (2010) Classification of genomic islands using decision trees and their ensemble algorithms. BMC Genomics 11(Suppl 2):S1. doi:10.1186/1471-2164-11-S2-S1
-
(2010)
BMC Genomics
, vol.11
, pp. S1
-
-
Che, D.1
Hockenbury, C.2
Marmelstein, R.3
Rasheed, K.4
-
11
-
-
34249753618
-
Support-vector networks
-
Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20: 273–297
-
(1995)
Mach Learn
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
12
-
-
0038391397
-
Boosting for tumor classification with gene expression data
-
Dettling M, Bühlmann P (2003) Boosting for tumor classification with gene expression data. Bioinforma 19(9):1061–1069. http://dblp.uni-trier.de/db/journals/bioinformatics/bioinformatics19.htmlDettlingB03
-
(2003)
Bioinforma
, vol.19
, Issue.9
, pp. 1061-1069
-
-
Dettling, M.1
Bühlmann, P.2
-
13
-
-
51349157589
-
Collision detection in legged locomotion using supervised learning
-
Doshi F, Brunskill E, Shkolnik A, Kollar T, Rohanimanesh K, Tedrake R, Roy N (2007) Collision detection in legged locomotion using supervised learning. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems
-
(2007)
In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems
-
-
Doshi, F.1
Brunskill, E.2
Shkolnik, A.3
Kollar, T.4
Rohanimanesh, K.5
Tedrake, R.6
Roy, N.7
-
14
-
-
79955007464
-
-
Douglas PK, Harris S, Yuille A, Cohen MS (2011)Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief. NeuroImage 56(2):544–553
-
Douglas PK, Harris S, Yuille A, Cohen MS (2011)Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief. NeuroImage 56(2):544–553. doi:10.1016/j.neuroimage.2010.11.002
-
-
-
-
15
-
-
70350620710
-
Monocular pedestrian detection: survey and experiments
-
Enzweiler M, Gavrila DM (2009) Monocular pedestrian detection: survey and experiments. IEEE Trans Pattern Analysis Mach Intell 31(12):2179–2195. doi:10.1109/TPAMI.2008.260
-
(2009)
IEEE Trans Pattern Analysis Mach Intell
, vol.31
, Issue.12
, pp. 2179-2195
-
-
Enzweiler, M.1
Gavrila, D.M.2
-
16
-
-
0012320945
-
Statistical evaluation of neural network experiments: minimum requirements and current practice
-
Flexer A (1994) Statistical evaluation of neural network experiments: minimum requirements and current practice. Aust Res Inst Artif Intell 2: 1005–1008
-
(1994)
Aust Res Inst Artif Intell
, vol.2
, pp. 1005-1008
-
-
Flexer, A.1
-
17
-
-
84922000783
-
-
Frank A, Asuncion A (2010) UCI machine learning repository
-
Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml
-
-
-
-
18
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55:119–139
-
Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55:119–139. doi:10.1006/jcss.1997.1504. http://portal.acm.org/citation.cfm?id=261540.261549
-
(1997)
doi:10.1006/jcss.1997.1504
-
-
Freund, Y.1
Schapire, R.E.2
-
19
-
-
84944811700
-
The use of ranks to avoid the assumption of normality implicit in the analysis of variance
-
Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200): 675–701. doi:10.2307/2279372
-
(1937)
J Am Stat Assoc
, vol.32
, Issue.200
, pp. 675-701
-
-
Friedman, M.1
-
20
-
-
34147148981
-
Additive logistic regression: a statistical view of boosting
-
Friedman J, Hastie T, Tibshirani R (1998) Additive logistic regression: a statistical view of boosting. Ann Stat 28: 2000
-
(1998)
Ann Stat
, vol.28
, pp. 2000
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
21
-
-
58149287952
-
An extension on “Statistical Comparisons of Classifiers over Multiple Data Sets” for all pairwise comparisons
-
García S, Herrera F (2008) An extension on “Statistical Comparisons of Classifiers over Multiple Data Sets” for all pairwise comparisons. J Mach Learn Res 9:2677–2694. http://www.jmlr.org/papers/volume9/garcia08a/garcia08a.pdf
-
(2008)
J Mach Learn Res
, vol.9
, pp. 2677-2694
-
-
García, S.1
Herrera, F.2
-
22
-
-
0037844872
-
Classification in a normalized feature space using support vector machines
-
Graf ABA., Smola AJ., Borer S (2003) Classification in a normalized feature space using support vector machines. IEEE Trans Neural Netw 14(3): 597–605. doi:10.1109/TNN.2003.811708
-
(2003)
IEEE Trans Neural Netw
, vol.14
, Issue.3
, pp. 597-605
-
-
Graf, A.B.A.1
Smola, A.J.2
Borer, S.3
-
24
-
-
76749092270
-
The weka data mining software: an update
-
Hall M., Frank E., Holmes G., Pfahringer B., Reutemann P., Witten IH (2009) The weka data mining software: an update. SIGKDD Explor Newsl 11(1): 10–18. doi:10.1145/1656274.1656278
-
(2009)
SIGKDD Explor Newsl
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
25
-
-
0036427995
-
Simple explanation of the no free lunch theorem of optimization
-
Ho YC, Pepyne DL (2002) Simple explanation of the no free lunch theorem of optimization. Cybern Syst Anal 38(2):4409–4414. http://www.springerlink.com/index/T1Q45BRR3TNU1K1R.pdf
-
(2002)
Cybern Syst Anal
, vol.38
, Issue.2
, pp. 4409-4414
-
-
Ho, Y.C.1
Pepyne, D.L.2
-
26
-
-
77951520710
-
An Inquiry concerning human understanding: with a supplement
-
Library of liberal arts, Bobbs-Merrill:
-
Hume D, Hendel C (1955) An Inquiry concerning human understanding: with a supplement, an abstract of a treatise of human nature. Library of liberal arts, Bobbs-Merrill. http://books.google.nl/books?id=-P4HAQAAIAAJ
-
(1955)
an abstract of a treatise of human nature
-
-
Hume, D.1
Hendel, C.2
-
27
-
-
0001750957
-
Approximations of the critical region of the friedman statistic
-
Iman RL, Davenport JM (1980) Approximations of the critical region of the friedman statistic. Commun Stat 9: 571–595
-
(1980)
Commun Stat
, vol.9
, pp. 571-595
-
-
Iman, R.L.1
Davenport, J.M.2
-
28
-
-
0002714543
-
Making large-scale support vector machine learning practical. MIT Press
-
Joachims T (1999) Making large-scale support vector machine learning practical. MIT Press, Cambridge, pp 169–184. http://dl.acm.org/citation.cfm?id=299094.299104
-
(1999)
Cambridge
, pp. 169-184
-
-
Joachims, T.1
-
30
-
-
36749047332
-
Supervised machine learning: a review of classification techniques
-
Kotsiantis SB (2007) Supervised machine learning: a review of classification techniques. Informatica 31(3):249–268. http://www.informatica.si/PDF/31-3/11_Kotsiantis
-
(2007)
Informatica
, vol.31
, Issue.3
, pp. 249-268
-
-
Kotsiantis, S.B.1
-
31
-
-
58049140910
-
Boosting methods for protein fold recognition: an empirical comparison
-
Krishnaraj Y., Reddy CK (2008) Boosting methods for protein fold recognition: an empirical comparison. IEEE Int Conf Bioinform Biomed 8: 393–396. doi:10.1109/BIBM.2008.83
-
(2008)
IEEE Int Conf Bioinform Biomed
, vol.8
, pp. 393-396
-
-
Krishnaraj, Y.1
Reddy, C.K.2
-
32
-
-
33646388382
-
Infinite ensemble learning with support vector machines. In: Proceedings of the 16th European conference on machine learning
-
Lin H, Li L (2005) Infinite ensemble learning with support vector machines. In: Proceedings of the 16th European conference on machine learning, pp 242–254
-
(2005)
pp 242–254
-
-
Lin, H.1
Li, L.2
-
33
-
-
0020102027
-
Least squares quantization in pcm
-
Lloyd SP (1982) Least squares quantization in pcm. IEEE Trans Inf Theory 28: 129–137
-
(1982)
IEEE Trans Inf Theory
, vol.28
, pp. 129-137
-
-
Lloyd, S.P.1
-
34
-
-
0016772212
-
-
Matthews BW (1975) Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Struct 405(2):442–451
-
Matthews BW (1975) Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Struct 405(2):442–451. doi:10.1016/0005-2795(75)90109-9. http://www.sciencedirect.com/science/article/pii/0005279575901099
-
-
-
-
35
-
-
33846991416
-
An empirical comparison of three boosting algorithms on real data sets with artificial class noise. In: Proceedings of the 4th international conference multiple classification system
-
McDonald RA, Hand DJ, Eckley IA (2003) An empirical comparison of three boosting algorithms on real data sets with artificial class noise. In: Proceedings of the 4th international conference multiple classification system, pp 35–44. http://dl.acm.org/citation.cfm?id=1764295.1764301
-
(2003)
pp 35–44
-
-
McDonald, R.A.1
Hand, D.J.2
Eckley, I.A.3
-
36
-
-
41549131613
-
Evidence contrary to the statistical view of boosting
-
Mease D, Wyner A (2008) Evidence contrary to the statistical view of boosting. J Mach Learn Res 9:131–156. http://dl.acm.org/citation.cfm?id=1390681.1390687
-
(2008)
J Mach Learn Res
, vol.9
, pp. 131-156
-
-
Mease, D.1
Wyner, A.2
-
37
-
-
0003682772
-
The need for biases in learning generalizations
-
Department of Computer Science, Rutgers University:
-
Mitchell TM (1980) The need for biases in learning generalizations. Technical Report CBM-TR-117, Department of Computer Science, Rutgers University
-
(1980)
Technical Report CBM-TR-117
-
-
Mitchell, T.M.1
-
38
-
-
76249121289
-
An evaluation of machine learning-based methods for detection of phishing sites
-
Miyamoto D, Hazeyama H, Kadobayashi Y (2008) An evaluation of machine learning-based methods for detection of phishing sites. Aus J Intell Inf Process Syst 10(2): 54–63
-
(2008)
Aus J Intell Inf Process Syst
, vol.10
, Issue.2
, pp. 54-63
-
-
Miyamoto, D.1
Hazeyama, H.2
Kadobayashi, Y.3
-
39
-
-
85016663484
-
Comparative experiments on disambiguating word senses: an illustration of the role of bias in machine learning. In: Proceedings of the conference on Empire methods in national language processing
-
Mooney RJ (1996) Comparative experiments on disambiguating word senses: an illustration of the role of bias in machine learning. In: Proceedings of the conference on Empire methods in national language processing, pp 82–91. http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=51464
-
(1996)
pp 82–91
-
-
Mooney, R.J.1
-
40
-
-
0030130727
-
-
Prechelt L (1996) A quantitative study of experimental evaluations of neural network learning algorithms: current research practice. Neural Netw 9(3):457–462
-
Prechelt L (1996) A quantitative study of experimental evaluations of neural network learning algorithms: current research practice. Neural Netw 9(3):457–462. doi:10.1016/0893-6080(95)00123-9. http://www.sciencedirect.com/science/article/pii/0893608095001239
-
-
-
-
41
-
-
33846925673
-
Adaboost and support vector machines for white matter lesion segmentation in mr images. In: 27th Annual international conference on engineering in medicine and biology society, pp 463–466
-
Quddus A, Fieguth P, Basir O (2005) Adaboost and support vector machines for white matter lesion segmentation in mr images. In: 27th Annual international conference on engineering in medicine and biology society, pp 463–466. doi:10.1109/IEMBS.2005.1616447
-
(2005)
doi:10.1109/IEMBS.2005.1616447
-
-
Quddus, A.1
Fieguth, P.2
Basir, O.3
-
43
-
-
0008562342
-
The state of boosting
-
Ridgeway G (1999) The state of boosting. Comput Sci Stat 31: 172–181
-
(1999)
Comput Sci Stat
, vol.31
, pp. 172-181
-
-
Ridgeway, G.1
-
46
-
-
27144463192
-
On comparing classifiers: pitfalls to avoid and a recommended approach
-
Salzberg S (1997) On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min Knowl Discov 1: 317–327
-
(1997)
Data Min Knowl Discov
, vol.1
, pp. 317-327
-
-
Salzberg, S.1
-
47
-
-
0002534234
-
On comparing classifiers: a critique of current research and methods
-
Salzberg SL (1999) On comparing classifiers: a critique of current research and methods. Data Min Knowl Discov 1: 1–12
-
(1999)
Data Min Knowl Discov
, vol.1
, pp. 1-12
-
-
Salzberg, S.L.1
-
48
-
-
80052878786
-
Real-time human Pose Recognition in Parts from Single Depth Images. Comput Vis Pattern Recogn
-
Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R, Kipman A, Blake A (2011) Real-time human Pose Recognition in Parts from Single Depth Images. Comput Vis Pattern Recogn. doi:10.1109/CVPR.2011.5995316. http://research.microsoft.com/apps/pubs/default.aspx?id=145347
-
(2011)
doi:10.1109/CVPR.2011.5995316
-
-
Shotton, J.1
Fitzgibbon, A.2
Cook, M.3
Sharp, T.4
Finocchio, M.5
Moore, R.6
Kipman, A.7
Blake, A.8
-
49
-
-
56149083834
-
Are random forests better than support vector machines for microarray-based cancer classification? In: AMIA annual symposium proceedings
-
Statnikov A, Aliferis CF (2007) Are random forests better than support vector machines for microarray-based cancer classification? In: AMIA annual symposium proceedings, pp 686–690. http://view.ncbi.nlm.nih.gov/pubmed/18693924
-
(2007)
pp 686–690
-
-
Statnikov, A.1
Aliferis, C.F.2
-
50
-
-
22544475586
-
GEMS: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data
-
Statnikov A, Tsamardinos I, Dosbayev Y, Aliferis CF (2005) GEMS: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data. Int J Med Inform 74(7–8):491–503. doi:10.1016/j.ijmedinf.2005.05.002
-
(2005)
Int J Med Inform
, vol.74
, Issue.7-8
, pp. 491-503
-
-
Statnikov, A.1
Tsamardinos, I.2
Dosbayev, Y.3
Aliferis, C.F.4
-
51
-
-
48549094895
-
A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
-
Statnikov A, Wang L, Aliferis C (2008) A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinforma 9(1):319. doi:10.1186/1471-2105-9-319
-
(2008)
BMC Bioinforma
, vol.9
, Issue.1
, pp. 319
-
-
Statnikov, A.1
Wang, L.2
Aliferis, C.3
-
52
-
-
67249154420
-
Support vector machines and random forests modeling for spam senders behavior analysis
-
Tang Y, Krasser S, He Y, Yang W, Alperovitch D (2008) Support vector machines and random forests modeling for spam senders behavior analysis. GLOBECOM pp 2174–2178. http://dblp.uni-trier.de/db/conf/globecom/globecom2008.htmlTangKHYA08
-
(2008)
GLOBECOM
, pp. 2174-2178
-
-
Tang, Y.1
Krasser, S.2
He, Y.3
Yang, W.4
Alperovitch, D.5
-
53
-
-
79952982192
-
No-reference metric design with machine learning for local video compression artifact level
-
Vink JP, de Haan G (2011) No-reference metric design with machine learning for local video compression artifact level. IEEE J Sel Top Signal Process 5(2): 297–308. doi:10.1109/JSTSP.2010.2055832
-
(2011)
IEEE J Sel Top Signal Process
, vol.5
, Issue.2
, pp. 297-308
-
-
Vink, J.P.1
de Haan, G.2
-
54
-
-
2142812371
-
Robust real-time face detection
-
Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2): 137–154. doi:10.1023/B:VISI.0000013087.49260.fb
-
(2004)
Int J Comput Vis
, vol.57
, Issue.2
, pp. 137-154
-
-
Viola, P.1
Jones, M.J.2
-
55
-
-
34547660269
-
The performance comparison of adaboost and svm applied to sar atr
-
Wang Y, Han P, Lu X, Wu R, Huang J (2006) The performance comparison of adaboost and svm applied to sar atr. CIE international conference on radar, pp 1–4. doi:10.1109/ICR.2006.343515
-
(2006)
CIE international conference on radar
, pp. 1-4
-
-
Wang, Y.1
Han, P.2
Lu, X.3
Wu, R.4
Huang, J.5
-
56
-
-
0034247206
-
Multiboosting: a technique for combining boosting and wagging
-
Webb GI (2000) Multiboosting: a technique for combining boosting and wagging. Mach Learn 40(2):159–196
-
(2000)
Mach Learn
, vol.40
, Issue.2
, pp. 159-196
-
-
Webb, G.I.1
-
57
-
-
0002489083
-
On the connection between in-sample testing and generalization error
-
Wolpert DH (1992) On the connection between in-sample testing and generalization error. Complex Syst 6: 47–94
-
(1992)
Complex Syst
, vol.6
, pp. 47-94
-
-
Wolpert, D.H.1
-
58
-
-
0031118203
-
No free lunch theorems for optimization
-
Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82. doi:10.1109/4235.585893
-
(1997)
IEEE Trans Evol Comput
, vol.1
, Issue.1
, pp. 67-82
-
-
Wolpert, D.H.1
Macready, W.G.2
-
59
-
-
37549018049
-
Top 10 algorithms in data mining
-
Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Yu PS, Zhou ZH, Steinbach M, Hand DJ, Steinberg D (2007) Top 10 algorithms in data mining. Knowl Inf Syst 14:1–37. doi:10.1007/s10115-007-0114-2
-
(2007)
Knowl Inf Syst
, vol.14
, pp. 1-37
-
-
Wu, X.1
Kumar, V.2
Ross Quinlan, J.3
Ghosh, J.4
Yang, Q.5
Motoda, H.6
McLachlan, G.J.7
Ng, A.8
Liu, B.9
Yu, P.S.10
Zhou, Z.H.11
Steinbach, M.12
Hand, D.J.13
Steinberg, D.14
|