메뉴 건너뛰기




Volumn 43, Issue 1, 2015, Pages 125-139

Comparison of machine learning techniques for target detection

Author keywords

AdaBoost; Classifier design; Machine learning; Performance evaluation; Supervised learning; SVM

Indexed keywords

ADAPTIVE BOOSTING; SUPERVISED LEARNING; SUPPORT VECTOR MACHINES;

EID: 84922001788     PISSN: 02692821     EISSN: 15737462     Source Type: Journal    
DOI: 10.1007/s10462-012-9366-7     Document Type: Article
Times cited : (27)

References (59)
  • 3
    • 15744404857 scopus 로고    scopus 로고
    • Machine learning methods for fully automatic recognition of facial expressions and facial actions. In: Proceedings of the IEEE international conference systems, man and cybernetics
    • Bartlett MS, Littlewort G, Lainscsek C, Fasel I, Movellan J (2004) Machine learning methods for fully automatic recognition of facial expressions and facial actions. In: Proceedings of the IEEE international conference systems, man and cybernetics, pp 592–597
    • (2004) pp 592–597
    • Bartlett, M.S.1    Littlewort, G.2    Lainscsek, C.3    Fasel, I.4    Movellan, J.5
  • 4
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Breiman L (1999) Prediction games and arcing algorithms. Neural Comput 11(7):1493–1517. doi:10.1162/089976699300016106
    • (1999) Neural Comput , vol.11 , Issue.7 , pp. 1493-1517
    • Breiman, L.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001) Random forests. Mach Learn 45(1): 5–32
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 7
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167
    • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167. doi:10.1023/A:1009715923555. http://dl.acm.org/citation.cfm?id=593419.593463
    • (1998) doi:10.1023/A:1009715923555
    • Burges, C.J.C.1
  • 8
    • 33749254096 scopus 로고    scopus 로고
    • An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on machine learning, pp 161–168
    • Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on machine learning, pp 161–168. doi:10.1145/1143844.1143865
    • (2006) doi:10.1145/1143844.1143865
    • Caruana, R.1    Niculescu-Mizil, A.2
  • 9
    • 56449089785 scopus 로고    scopus 로고
    • An empirical evaluation of supervised learning in high dimensions. In: Proceedings of the 25th international conference on machine learning, pp 96–103
    • Caruana R, Karampatziakis N, Yessenalina A (2008) An empirical evaluation of supervised learning in high dimensions. In: Proceedings of the 25th international conference on machine learning, pp 96–103. doi:10.1145/1390156.1390169
    • (2008) doi:10.1145/1390156.1390169
    • Caruana, R.1    Karampatziakis, N.2    Yessenalina, A.3
  • 10
    • 78149350199 scopus 로고    scopus 로고
    • Classification of genomic islands using decision trees and their ensemble algorithms
    • Che D, Hockenbury C, Marmelstein R, Rasheed K (2010) Classification of genomic islands using decision trees and their ensemble algorithms. BMC Genomics 11(Suppl 2):S1. doi:10.1186/1471-2164-11-S2-S1
    • (2010) BMC Genomics , vol.11 , pp. S1
    • Che, D.1    Hockenbury, C.2    Marmelstein, R.3    Rasheed, K.4
  • 11
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20: 273–297
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 12
    • 0038391397 scopus 로고    scopus 로고
    • Boosting for tumor classification with gene expression data
    • Dettling M, Bühlmann P (2003) Boosting for tumor classification with gene expression data. Bioinforma 19(9):1061–1069. http://dblp.uni-trier.de/db/journals/bioinformatics/bioinformatics19.htmlDettlingB03
    • (2003) Bioinforma , vol.19 , Issue.9 , pp. 1061-1069
    • Dettling, M.1    Bühlmann, P.2
  • 14
    • 79955007464 scopus 로고    scopus 로고
    • Douglas PK, Harris S, Yuille A, Cohen MS (2011)Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief. NeuroImage 56(2):544–553
    • Douglas PK, Harris S, Yuille A, Cohen MS (2011)Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief. NeuroImage 56(2):544–553. doi:10.1016/j.neuroimage.2010.11.002
  • 15
    • 70350620710 scopus 로고    scopus 로고
    • Monocular pedestrian detection: survey and experiments
    • Enzweiler M, Gavrila DM (2009) Monocular pedestrian detection: survey and experiments. IEEE Trans Pattern Analysis Mach Intell 31(12):2179–2195. doi:10.1109/TPAMI.2008.260
    • (2009) IEEE Trans Pattern Analysis Mach Intell , vol.31 , Issue.12 , pp. 2179-2195
    • Enzweiler, M.1    Gavrila, D.M.2
  • 16
    • 0012320945 scopus 로고
    • Statistical evaluation of neural network experiments: minimum requirements and current practice
    • Flexer A (1994) Statistical evaluation of neural network experiments: minimum requirements and current practice. Aust Res Inst Artif Intell 2: 1005–1008
    • (1994) Aust Res Inst Artif Intell , vol.2 , pp. 1005-1008
    • Flexer, A.1
  • 17
    • 84922000783 scopus 로고    scopus 로고
    • Frank A, Asuncion A (2010) UCI machine learning repository
    • Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml
  • 18
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55:119–139
    • Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55:119–139. doi:10.1006/jcss.1997.1504. http://portal.acm.org/citation.cfm?id=261540.261549
    • (1997) doi:10.1006/jcss.1997.1504
    • Freund, Y.1    Schapire, R.E.2
  • 19
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200): 675–701. doi:10.2307/2279372
    • (1937) J Am Stat Assoc , vol.32 , Issue.200 , pp. 675-701
    • Friedman, M.1
  • 20
    • 34147148981 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Friedman J, Hastie T, Tibshirani R (1998) Additive logistic regression: a statistical view of boosting. Ann Stat 28: 2000
    • (1998) Ann Stat , vol.28 , pp. 2000
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 21
    • 58149287952 scopus 로고    scopus 로고
    • An extension on “Statistical Comparisons of Classifiers over Multiple Data Sets” for all pairwise comparisons
    • García S, Herrera F (2008) An extension on “Statistical Comparisons of Classifiers over Multiple Data Sets” for all pairwise comparisons. J Mach Learn Res 9:2677–2694. http://www.jmlr.org/papers/volume9/garcia08a/garcia08a.pdf
    • (2008) J Mach Learn Res , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 22
    • 0037844872 scopus 로고    scopus 로고
    • Classification in a normalized feature space using support vector machines
    • Graf ABA., Smola AJ., Borer S (2003) Classification in a normalized feature space using support vector machines. IEEE Trans Neural Netw 14(3): 597–605. doi:10.1109/TNN.2003.811708
    • (2003) IEEE Trans Neural Netw , vol.14 , Issue.3 , pp. 597-605
    • Graf, A.B.A.1    Smola, A.J.2    Borer, S.3
  • 23
    • 33646391384 scopus 로고    scopus 로고
    • Result analysis of the nips 2003 feature selection challenge
    • Guyon I., Hur AB., Gunn S., Dror G (2004) Result analysis of the nips 2003 feature selection challenge. Adv Neural Inf Process Syst 17: 545–552
    • (2004) Adv Neural Inf Process Syst , vol.17 , pp. 545-552
    • Guyon, I.1    Hur, A.B.2    Gunn, S.3    Dror, G.4
  • 25
    • 0036427995 scopus 로고    scopus 로고
    • Simple explanation of the no free lunch theorem of optimization
    • Ho YC, Pepyne DL (2002) Simple explanation of the no free lunch theorem of optimization. Cybern Syst Anal 38(2):4409–4414. http://www.springerlink.com/index/T1Q45BRR3TNU1K1R.pdf
    • (2002) Cybern Syst Anal , vol.38 , Issue.2 , pp. 4409-4414
    • Ho, Y.C.1    Pepyne, D.L.2
  • 26
    • 77951520710 scopus 로고
    • An Inquiry concerning human understanding: with a supplement
    • Library of liberal arts, Bobbs-Merrill:
    • Hume D, Hendel C (1955) An Inquiry concerning human understanding: with a supplement, an abstract of a treatise of human nature. Library of liberal arts, Bobbs-Merrill. http://books.google.nl/books?id=-P4HAQAAIAAJ
    • (1955) an abstract of a treatise of human nature
    • Hume, D.1    Hendel, C.2
  • 27
    • 0001750957 scopus 로고
    • Approximations of the critical region of the friedman statistic
    • Iman RL, Davenport JM (1980) Approximations of the critical region of the friedman statistic. Commun Stat 9: 571–595
    • (1980) Commun Stat , vol.9 , pp. 571-595
    • Iman, R.L.1    Davenport, J.M.2
  • 28
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical. MIT Press
    • Joachims T (1999) Making large-scale support vector machine learning practical. MIT Press, Cambridge, pp 169–184. http://dl.acm.org/citation.cfm?id=299094.299104
    • (1999) Cambridge , pp. 169-184
    • Joachims, T.1
  • 30
    • 36749047332 scopus 로고    scopus 로고
    • Supervised machine learning: a review of classification techniques
    • Kotsiantis SB (2007) Supervised machine learning: a review of classification techniques. Informatica 31(3):249–268. http://www.informatica.si/PDF/31-3/11_Kotsiantis
    • (2007) Informatica , vol.31 , Issue.3 , pp. 249-268
    • Kotsiantis, S.B.1
  • 31
    • 58049140910 scopus 로고    scopus 로고
    • Boosting methods for protein fold recognition: an empirical comparison
    • Krishnaraj Y., Reddy CK (2008) Boosting methods for protein fold recognition: an empirical comparison. IEEE Int Conf Bioinform Biomed 8: 393–396. doi:10.1109/BIBM.2008.83
    • (2008) IEEE Int Conf Bioinform Biomed , vol.8 , pp. 393-396
    • Krishnaraj, Y.1    Reddy, C.K.2
  • 32
    • 33646388382 scopus 로고    scopus 로고
    • Infinite ensemble learning with support vector machines. In: Proceedings of the 16th European conference on machine learning
    • Lin H, Li L (2005) Infinite ensemble learning with support vector machines. In: Proceedings of the 16th European conference on machine learning, pp 242–254
    • (2005) pp 242–254
    • Lin, H.1    Li, L.2
  • 33
    • 0020102027 scopus 로고
    • Least squares quantization in pcm
    • Lloyd SP (1982) Least squares quantization in pcm. IEEE Trans Inf Theory 28: 129–137
    • (1982) IEEE Trans Inf Theory , vol.28 , pp. 129-137
    • Lloyd, S.P.1
  • 34
    • 0016772212 scopus 로고    scopus 로고
    • Matthews BW (1975) Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Struct 405(2):442–451
    • Matthews BW (1975) Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Struct 405(2):442–451. doi:10.1016/0005-2795(75)90109-9. http://www.sciencedirect.com/science/article/pii/0005279575901099
  • 35
    • 33846991416 scopus 로고    scopus 로고
    • An empirical comparison of three boosting algorithms on real data sets with artificial class noise. In: Proceedings of the 4th international conference multiple classification system
    • McDonald RA, Hand DJ, Eckley IA (2003) An empirical comparison of three boosting algorithms on real data sets with artificial class noise. In: Proceedings of the 4th international conference multiple classification system, pp 35–44. http://dl.acm.org/citation.cfm?id=1764295.1764301
    • (2003) pp 35–44
    • McDonald, R.A.1    Hand, D.J.2    Eckley, I.A.3
  • 36
    • 41549131613 scopus 로고    scopus 로고
    • Evidence contrary to the statistical view of boosting
    • Mease D, Wyner A (2008) Evidence contrary to the statistical view of boosting. J Mach Learn Res 9:131–156. http://dl.acm.org/citation.cfm?id=1390681.1390687
    • (2008) J Mach Learn Res , vol.9 , pp. 131-156
    • Mease, D.1    Wyner, A.2
  • 37
    • 0003682772 scopus 로고
    • The need for biases in learning generalizations
    • Department of Computer Science, Rutgers University:
    • Mitchell TM (1980) The need for biases in learning generalizations. Technical Report CBM-TR-117, Department of Computer Science, Rutgers University
    • (1980) Technical Report CBM-TR-117
    • Mitchell, T.M.1
  • 38
    • 76249121289 scopus 로고    scopus 로고
    • An evaluation of machine learning-based methods for detection of phishing sites
    • Miyamoto D, Hazeyama H, Kadobayashi Y (2008) An evaluation of machine learning-based methods for detection of phishing sites. Aus J Intell Inf Process Syst 10(2): 54–63
    • (2008) Aus J Intell Inf Process Syst , vol.10 , Issue.2 , pp. 54-63
    • Miyamoto, D.1    Hazeyama, H.2    Kadobayashi, Y.3
  • 39
    • 85016663484 scopus 로고    scopus 로고
    • Comparative experiments on disambiguating word senses: an illustration of the role of bias in machine learning. In: Proceedings of the conference on Empire methods in national language processing
    • Mooney RJ (1996) Comparative experiments on disambiguating word senses: an illustration of the role of bias in machine learning. In: Proceedings of the conference on Empire methods in national language processing, pp 82–91. http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=51464
    • (1996) pp 82–91
    • Mooney, R.J.1
  • 40
    • 0030130727 scopus 로고    scopus 로고
    • Prechelt L (1996) A quantitative study of experimental evaluations of neural network learning algorithms: current research practice. Neural Netw 9(3):457–462
    • Prechelt L (1996) A quantitative study of experimental evaluations of neural network learning algorithms: current research practice. Neural Netw 9(3):457–462. doi:10.1016/0893-6080(95)00123-9. http://www.sciencedirect.com/science/article/pii/0893608095001239
  • 41
    • 33846925673 scopus 로고    scopus 로고
    • Adaboost and support vector machines for white matter lesion segmentation in mr images. In: 27th Annual international conference on engineering in medicine and biology society, pp 463–466
    • Quddus A, Fieguth P, Basir O (2005) Adaboost and support vector machines for white matter lesion segmentation in mr images. In: 27th Annual international conference on engineering in medicine and biology society, pp 463–466. doi:10.1109/IEMBS.2005.1616447
    • (2005) doi:10.1109/IEMBS.2005.1616447
    • Quddus, A.1    Fieguth, P.2    Basir, O.3
  • 43
    • 0008562342 scopus 로고    scopus 로고
    • The state of boosting
    • Ridgeway G (1999) The state of boosting. Comput Sci Stat 31: 172–181
    • (1999) Comput Sci Stat , vol.31 , pp. 172-181
    • Ridgeway, G.1
  • 46
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: pitfalls to avoid and a recommended approach
    • Salzberg S (1997) On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min Knowl Discov 1: 317–327
    • (1997) Data Min Knowl Discov , vol.1 , pp. 317-327
    • Salzberg, S.1
  • 47
    • 0002534234 scopus 로고    scopus 로고
    • On comparing classifiers: a critique of current research and methods
    • Salzberg SL (1999) On comparing classifiers: a critique of current research and methods. Data Min Knowl Discov 1: 1–12
    • (1999) Data Min Knowl Discov , vol.1 , pp. 1-12
    • Salzberg, S.L.1
  • 49
    • 56149083834 scopus 로고    scopus 로고
    • Are random forests better than support vector machines for microarray-based cancer classification? In: AMIA annual symposium proceedings
    • Statnikov A, Aliferis CF (2007) Are random forests better than support vector machines for microarray-based cancer classification? In: AMIA annual symposium proceedings, pp 686–690. http://view.ncbi.nlm.nih.gov/pubmed/18693924
    • (2007) pp 686–690
    • Statnikov, A.1    Aliferis, C.F.2
  • 50
    • 22544475586 scopus 로고    scopus 로고
    • GEMS: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data
    • Statnikov A, Tsamardinos I, Dosbayev Y, Aliferis CF (2005) GEMS: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data. Int J Med Inform 74(7–8):491–503. doi:10.1016/j.ijmedinf.2005.05.002
    • (2005) Int J Med Inform , vol.74 , Issue.7-8 , pp. 491-503
    • Statnikov, A.1    Tsamardinos, I.2    Dosbayev, Y.3    Aliferis, C.F.4
  • 51
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    • Statnikov A, Wang L, Aliferis C (2008) A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinforma 9(1):319. doi:10.1186/1471-2105-9-319
    • (2008) BMC Bioinforma , vol.9 , Issue.1 , pp. 319
    • Statnikov, A.1    Wang, L.2    Aliferis, C.3
  • 52
    • 67249154420 scopus 로고    scopus 로고
    • Support vector machines and random forests modeling for spam senders behavior analysis
    • Tang Y, Krasser S, He Y, Yang W, Alperovitch D (2008) Support vector machines and random forests modeling for spam senders behavior analysis. GLOBECOM pp 2174–2178. http://dblp.uni-trier.de/db/conf/globecom/globecom2008.htmlTangKHYA08
    • (2008) GLOBECOM , pp. 2174-2178
    • Tang, Y.1    Krasser, S.2    He, Y.3    Yang, W.4    Alperovitch, D.5
  • 53
    • 79952982192 scopus 로고    scopus 로고
    • No-reference metric design with machine learning for local video compression artifact level
    • Vink JP, de Haan G (2011) No-reference metric design with machine learning for local video compression artifact level. IEEE J Sel Top Signal Process 5(2): 297–308. doi:10.1109/JSTSP.2010.2055832
    • (2011) IEEE J Sel Top Signal Process , vol.5 , Issue.2 , pp. 297-308
    • Vink, J.P.1    de Haan, G.2
  • 54
    • 2142812371 scopus 로고    scopus 로고
    • Robust real-time face detection
    • Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2): 137–154. doi:10.1023/B:VISI.0000013087.49260.fb
    • (2004) Int J Comput Vis , vol.57 , Issue.2 , pp. 137-154
    • Viola, P.1    Jones, M.J.2
  • 56
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: a technique for combining boosting and wagging
    • Webb GI (2000) Multiboosting: a technique for combining boosting and wagging. Mach Learn 40(2):159–196
    • (2000) Mach Learn , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 57
    • 0002489083 scopus 로고
    • On the connection between in-sample testing and generalization error
    • Wolpert DH (1992) On the connection between in-sample testing and generalization error. Complex Syst 6: 47–94
    • (1992) Complex Syst , vol.6 , pp. 47-94
    • Wolpert, D.H.1
  • 58
    • 0031118203 scopus 로고    scopus 로고
    • No free lunch theorems for optimization
    • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82. doi:10.1109/4235.585893
    • (1997) IEEE Trans Evol Comput , vol.1 , Issue.1 , pp. 67-82
    • Wolpert, D.H.1    Macready, W.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.