메뉴 건너뛰기




Volumn , Issue , 1996, Pages 82-91

Comparative Experiments on Disambiguating Word Senses: An Illustration of the Role of Bias in Machine Learning

Author keywords

[No Author keywords available]

Indexed keywords

DECISION TREES; MACHINE LEARNING; NATURAL LANGUAGE PROCESSING SYSTEMS;

EID: 85016663484     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (108)

References (59)
  • 2
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6(1), 37-66.
    • (1991) Machine Learning , vol.6 , Issue.1 , pp. 37-66
    • Aha, D. W.1    Kibler, D.2    Albert, M. K.3
  • 4
    • 0003259882 scopus 로고
    • Performance comparisons between backpropagation networks and classification trees on three real-world applications
    • Touretzky, D. S. (Ed), Morgan Kaufmann, San Mateo, CA
    • Atlas, L., Cole, R., Conner, J., E1-Sharkawi, M., Marks, R., Muthusamy, Y., & Bernard, E. (1990). Performance comparisons between backpropagation networks and classification trees on three real-world applications. In Touretzky, D. S. (Ed.), Advances in Neural Information Processing Systems 2. Morgan Kaufmann, San Mateo, CA.
    • (1990) Advances in Neural Information Processing Systems 2
    • Atlas, L.1    Cole, R.2    Conner, J.3    E1-Sharkawi, M.4    Marks, R.5    Muthusamy, Y.6    Bernard, E.7
  • 10
    • 0002172868 scopus 로고
    • A stochastic parts program and noun phrase parser for unrestricted text
    • Association for Computational Linguistics
    • Church, K. (1988). A stochastic parts program and noun phrase parser for unrestricted text. In Proceedings of the Second Conference on Applied Natural Language Processing. Association for Computational Linguistics.
    • (1988) Proceedings of the Second Conference on Applied Natural Language Processing
    • Church, K.1
  • 11
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3, 261-284.
    • (1989) Machine Learning , vol.3 , pp. 261-284
    • Clark, P.1    Niblett, T.2
  • 17
    • 34248847962 scopus 로고
    • A method for disambiguating word senses in a large corpus
    • Gale, W., Church, K., & Yarowsky, D. (1992a). A method for disambiguating word senses in a large corpus. Computers and the Humanities, 26, 415-439.
    • (1992) Computers and the Humanities , vol.26 , pp. 415-439
    • Gale, W.1    Church, K.2    Yarowsky, D.3
  • 19
    • 12444258560 scopus 로고
    • Evaluation and selection of biases in machine learning
    • (/2)
    • Gordon, D. F., & desJardins, M. (1995). Evaluation and selection of biases in machine learning. Machine Learning, 20(1/2), 5-22.
    • (1995) Machine Learning , vol.20 , Issue.1 , pp. 5-22
    • Gordon, D. F.1    desJardins, M.2
  • 20
    • 85055298846 scopus 로고
    • Structural ambiguity and lexical relations
    • Hindle, D., & Rooth, M. (1993). Structural ambiguity and lexical relations. Computational Linguistics, 19(1), 103-120.
    • (1993) Computational Linguistics , vol.19 , Issue.1 , pp. 103-120
    • Hindle, D.1    Rooth, M.2
  • 21
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11(1), 63-90.
    • (1993) Machine Learning , vol.11 , Issue.1 , pp. 63-90
    • Holte, R. C.1
  • 28
    • 0027652459 scopus 로고
    • Learning the past tense of English verbs: The symbolic pattern associator vs. connectionist models
    • Ling, C. X. (1994). Learning the past tense of English verbs: The symbolic pattern associator vs. connectionist models. Journal of Artificial Intelligence Research, 1, 209-229.
    • (1994) Journal of Artificial Intelligence Research , vol.1 , pp. 209-229
    • Ling, C. X.1
  • 29
    • 0027719422 scopus 로고
    • Answering the connectionist challenge: A symbolic model of learning the past tense of English verbs
    • Ling, C. X., & Marinov, M. (1993). Answering the connectionist challenge: A symbolic model of learning the past tense of English verbs. Cognition, 49(3), 235-290.
    • (1993) Cognition , vol.49 , Issue.3 , pp. 235-290
    • Ling, C. X.1    Marinov, M.2
  • 30
    • 34249852033 scopus 로고
    • Building a large annotated corpus of English: The Penn treebank
    • Marcus, M., Santorini, B., & Marcinkiewicz, M. (1993). Building a large annotated corpus of English: The Penn treebank. Computational Linguistics, 19(2), 313-330.
    • (1993) Computational Linguistics , vol.19 , Issue.2 , pp. 313-330
    • Marcus, M.1    Santorini, B.2    Marcinkiewicz, M.3
  • 31
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Science,UniversityofCalifornia,Irvine,CA
    • Merz, C., Murphy, P. M., & Aha, D. W. (1996). Repository of machine learning databases http://w~, ics.uci.edu/'mlearn/mlrepos itory,html. Department of Information and Computer Science,UniversityofCalifornia,Irvine,CA.
    • (1996) Repository of machine learning databases
    • Merz, C.1    Murphy, P. M.2    Aha, D. W.3
  • 32
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds), Tioga
    • Michalski, R. S. (1983). A theory and methodology of inductive learning. In Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.), Machine Learning: An Artificial Intelligence Approach, pp. 83-134. Tioga.
    • (1983) Machine Learning: An Artificial Intelligence Approach , pp. 83-134
    • Michalski, R. S.1
  • 34
    • 0003682772 scopus 로고
    • Tech. rep. CBM-TR-117, Rutgers University. Reprinted in Readings in Machine Learning, J. W. Shavlik and T. G. Dietterich (eds), Morgan Kaufman, San Mateo, CA, 1990
    • Mitchell, T. (1980). The need for biases in learning generalizations. Tech. rep. CBM-TR-117, Rutgers University. Reprinted in Readings in Machine Learning, J. W. Shavlik and T. G. Dietterich (eds.), Morgan Kaufman, San Mateo, CA, 1990.
    • (1980) The need for biases in learning generalizations
    • Mitchell, T.1
  • 35
    • 0011020176 scopus 로고
    • Encouraging experimental results on learning CNF
    • Mooney, R. J. (1995). Encouraging experimental results on learning CNF. Machine Learning, I9(1), 79-92.
    • (1995) Machine Learning , vol.I9 , Issue.1 , pp. 79-92
    • Mooney, R. J.1
  • 36
    • 0001868096 scopus 로고
    • Induction of first-order decision lists: Results on learning the past tense of English verbs
    • Mooney, R. J., & Califf, M. E. (1995). Induction of first-order decision lists: Results on learning the past tense of English verbs. Journal of Artificial Intelligence Research, 3, 1-24.
    • (1995) Journal of Artificial Intelligence Research , vol.3 , pp. 1-24
    • Mooney, R. J.1    Califf, M. E.2
  • 37
    • 0002668777 scopus 로고
    • An experimental comparison of symbolic and connectionist learning algorithms
    • Detroit, MI. Reprinted in Readings in Machine Learning, J. W. Shavlik and T. G. Dietterich (eds), Morgan Kaufman, San Mateo, CA, 1990
    • Mooney, R. J., Shavlik, J. W., Towell, G., & Gove, A. (1989). An experimental comparison of symbolic and connectionist learning algorithms. In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, pp. 775-780 Detroit, MI. Reprinted in Readings in Machine Learning, J. W. Shavlik and T. G. Dietterich (eds.), Morgan Kaufman, San Mateo, CA, 1990.
    • (1989) Proceedings of the Eleventh International Joint Conference on Artificial Intelligence , pp. 775-780
    • Mooney, R. J.1    Shavlik, J. W.2    Towell, G.3    Gove, A.4
  • 39
    • 0025389210 scopus 로고
    • Boolean feature discovery in empirical learning
    • Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning. Machine Learning, 5, 71-100.
    • (1990) Machine Learning , vol.5 , pp. 71-100
    • Pagallo, G.1    Haussler, D.2
  • 42
    • 0001172265 scopus 로고
    • Learning logical definitions from relations
    • Quinlan, J. (1990). Learning logical definitions from relations. Machine Learning, 5(3), 239-266.
    • (1990) Machine Learning , vol.5 , Issue.3 , pp. 239-266
    • Quinlan, J.1
  • 43
    • 85115704629 scopus 로고
    • For every generalization action is there really an equal an opposite reaction? Analysis of the conservation law for generalization performance
    • San Francisco, CA. Morgan Kaufman
    • Rao, R. B., Gordon, D., & Spears, W. (1995). For every generalization action is there really an equal an opposite reaction? Analysis of the conservation law for generalization performance. In Proceedings of the Twelfth International Conference on Machine Learning, pp. 471-479 San Francisco, CA. Morgan Kaufman.
    • (1995) Proceedings of the Twelfth International Conference on Machine Learning , pp. 471-479
    • Rao, R. B.1    Gordon, D.2    Spears, W.3
  • 45
    • 1442267080 scopus 로고
    • Learning decision lists
    • Rivest, R. L.. (1987). Learning decision lists. Machine Learning, 2(3), 229-246.
    • (1987) Machine Learning , vol.2 , Issue.3 , pp. 229-246
    • Rivest, R. L.1
  • 47
    • 0003444646 scopus 로고
    • Learning internal representations by error propagation
    • Rumelhart, D. E., & McClelland, J. L. (Eds), MIT Press, Cambridge, MA
    • Rumelhart, D. E., Hinton, G. E., & Williams, J. R. (1986). Learning internal representations by error propagation. In Rumelhart, D. E., & McClelland, J. L. (Eds.), Parallel Distributed Processing, Vol. I, pp. 318-362. MIT Press, Cambridge, MA.
    • (1986) Parallel Distributed Processing , vol.I , pp. 318-362
    • Rumelhart, D. E.1    Hinton, G. E.2    Williams, J. R.3
  • 49
    • 0000245470 scopus 로고
    • Selecting a classification method by cross-validation
    • Schaffer, C. (1993). Selecting a classification method by cross-validation. Machine Learning, 13(1), 135-143.
    • (1993) Machine Learning , vol.13 , Issue.1 , pp. 135-143
    • Schaffer, C.1
  • 52
    • 0026119038 scopus 로고
    • Symbolic and neural learning algorithms: An experimental comparison
    • g Reprinted in Readings in Knowledge Acquisition and Learning, B. G. Buchanan and D. C. Wilkins (eds), Morgan Kaufman, San Mateo, CA, 1993
    • Shavlik, J. W., Mooney, R. J., g~ Towell, G. G. (1991). Symbolic and neural learning algorithms: An experimental comparison. Machine Learning, 6, 111-143. Reprinted in Readings in Knowledge Acquisition and Learning, B. G. Buchanan and D. C. Wilkins (eds.), Morgan Kaufman, San Mateo, CA, 1993.
    • (1991) Machine Learning , vol.6 , pp. 111-143
    • Shavlik, J. W.1    Mooney, R. J.2    Towell, G. G.3
  • 54
    • 85143968525 scopus 로고
    • Learning context to disambiguate word senses
    • Petsche, T., Hanson, S., & Shavlik, J. (Eds), MIT Press, Cambridge, MA
    • Voorhees, E., Leacock, C., & Towell, G. (1995). Learning context to disambiguate word senses. In Petsche, T., Hanson, S., & Shavlik, J. (Eds.), Computational Learning Theory and Natural Learning Systems, Vol. 3, pp. 279-305. MIT Press, Cambridge, MA.
    • (1995) Computational Learning Theory and Natural Learning Systems , vol.3 , pp. 279-305
    • Voorhees, E.1    Leacock, C.2    Towell, G.3
  • 57
    • 0002489083 scopus 로고
    • On the connection between in-sample testing and generalization error
    • Wolpert, D. H. (1992). On the connection between in-sample testing and generalization error. Complex Systems, 6, 47-94.
    • (1992) Complex Systems , vol.6 , pp. 47-94
    • Wolpert, D. H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.