-
1
-
-
0000217085
-
Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms
-
Aha D.W. Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms. Infernat. J. Man-Machine Studies 1992, 36:267-287.
-
(1992)
Infernat. J. Man-Machine Studies
, vol.36
, pp. 267-287
-
-
Aha, D.W.1
-
2
-
-
0016355478
-
A new look at the statistical model identification
-
Akaike H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19:716-723.
-
(1974)
IEEE Trans. Autom. Control
, vol.19
, pp. 716-723
-
-
Akaike, H.1
-
4
-
-
71849117427
-
Classification of spatially unaligned fMRI scans
-
Anderson A., Dinov I.D., Sherin J.E., Quintana J., Yuille A.L., Cohen M.S. Classification of spatially unaligned fMRI scans. NeuroImage 2010, 49(3):2509-2519. 10.1016/j.neuroimage.2009.08.036.
-
(2010)
NeuroImage
, vol.49
, Issue.3
, pp. 2509-2519
-
-
Anderson, A.1
Dinov, I.D.2
Sherin, J.E.3
Quintana, J.4
Yuille, A.L.5
Cohen, M.S.6
-
5
-
-
33646881510
-
Applying FSL to the FIAC data: model-based and model-free analysis of voice and sentence repetition priming
-
Beckmann C.F., Jenkinson M., Woolrich M.W., Behrens T.E.J., Flitney D.E., Devlin J.T., et al. Applying FSL to the FIAC data: model-based and model-free analysis of voice and sentence repetition priming. Hum. Brain Mapp. 2006, 27(5):380-391. 10.1002/hbm.20246.
-
(2006)
Hum. Brain Mapp.
, vol.27
, Issue.5
, pp. 380-391
-
-
Beckmann, C.F.1
Jenkinson, M.2
Woolrich, M.W.3
Behrens, T.E.J.4
Flitney, D.E.5
Devlin, J.T.6
-
6
-
-
0036372855
-
New feature subset selection procedures for classification of expression profiles
-
Bo T.H., Jonassen I. New feature subset selection procedures for classification of expression profiles. Genome Biol. 2002, 3(4):1-11.
-
(2002)
Genome Biol.
, vol.3
, Issue.4
, pp. 1-11
-
-
Bo, T.H.1
Jonassen, I.2
-
7
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach. Learn. 1996, 24:123-140.
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
8
-
-
0035478854
-
Random Forests
-
Breiman L. Random Forests. Mach. Learn. 2001, 45:5-32.
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
9
-
-
0028779451
-
-
The cold war experiments. U.S. News & World Report, 116(3), 32-34, 36, 38.
-
Budiansky, S., Goode, E.E., Gest, T. (1994). The cold war experiments. U.S. News & World Report, 116(3), 32-34, 36, 38.
-
(1994)
-
-
Budiansky, S.1
Goode, E.E.2
Gest, T.3
-
10
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2(2):121-167.
-
(1998)
Data Min. Knowl. Discov.
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.1
-
12
-
-
0041737619
-
Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex
-
Cox D.D., Savoy R.L. Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 2003, 19(2 Pt 1):261-270.
-
(2003)
Neuroimage
, vol.19
, Issue.2 PART 1
, pp. 261-270
-
-
Cox, D.D.1
Savoy, R.L.2
-
14
-
-
0013326060
-
Feature selection for classification
-
Dash M., Liu H. Feature selection for classification. Int. J. Intell. Data Anal. 1997, 1(3):1997.
-
(1997)
Int. J. Intell. Data Anal.
, vol.1
, Issue.3
, pp. 1997
-
-
Dash, M.1
Liu, H.2
-
15
-
-
49949099765
-
Applications of real-time fMRI
-
deCharms R.C. Applications of real-time fMRI. Nat. Rev. Neurosci. 2008, 9(9):720-729. 10.1038/nrn2414.
-
(2008)
Nat. Rev. Neurosci.
, vol.9
, Issue.9
, pp. 720-729
-
-
deCharms, R.C.1
-
18
-
-
0029029430
-
Characterizing dynamic brain responses with fMRI: a multivariate approach
-
Friston K.J., Frith C.D., Frackowiak R.S., Turner R. Characterizing dynamic brain responses with fMRI: a multivariate approach. Neuroimage 1995, 2(2):166-172.
-
(1995)
Neuroimage
, vol.2
, Issue.2
, pp. 166-172
-
-
Friston, K.J.1
Frith, C.D.2
Frackowiak, R.S.3
Turner, R.4
-
19
-
-
0042354786
-
Comparison of linear, nonlinear, and feature selection methods for EEG signal classification
-
Garrett D., et al. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11(2).
-
(2003)
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.11
, Issue.2
-
-
Garrett, D.1
-
20
-
-
0033569406
-
Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
-
Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science (New York, N.Y.) 1999, 286(5439):531-537.
-
(1999)
Science (New York, N.Y.)
, vol.286
, Issue.5439
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.P.6
-
21
-
-
4344638967
-
Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a "face" area?
-
Hanson S.J., Matsuka T., Haxby J.V. Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a "face" area?. Neuroimage 2004, 23(1):156-166. 10.1016/j.neuroimage.2004.05.020.
-
(2004)
Neuroimage
, vol.23
, Issue.1
, pp. 156-166
-
-
Hanson, S.J.1
Matsuka, T.2
Haxby, J.V.3
-
22
-
-
40449125596
-
Functional neuroimaging of belief, disbelief, and uncertainty
-
Harris S., Sheth S.A., Cohen M.S. Functional neuroimaging of belief, disbelief, and uncertainty. Ann. Neurol. 2008, 63(2):141-147. 10.1002/ana.21301.
-
(2008)
Ann. Neurol.
, vol.63
, Issue.2
, pp. 141-147
-
-
Harris, S.1
Sheth, S.A.2
Cohen, M.S.3
-
23
-
-
84931162639
-
The condensed nearest neighbour rule
-
Hart P.E. The condensed nearest neighbour rule. IEEE Trans. Inf. Theory 1968, 14:515-516.
-
(1968)
IEEE Trans. Inf. Theory
, vol.14
, pp. 515-516
-
-
Hart, P.E.1
-
24
-
-
0003684449
-
-
Springer Series in Statistics, New York, NY
-
Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning 2001, Springer Series in Statistics, New York, NY.
-
(2001)
The Elements of Statistical Learning
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
25
-
-
79955012500
-
Statistical learning analysis in neuroscience: aiming for transparency
-
Apr 15
-
Hanke M., Halchenko Y.O., Haxby J.V., Pollmann S. Statistical learning analysis in neuroscience: aiming for transparency. Front Neurosci. 2010, 4:38. Apr 15.
-
(2010)
Front Neurosci.
, vol.4
, pp. 38
-
-
Hanke, M.1
Halchenko, Y.O.2
Haxby, J.V.3
Pollmann, S.4
-
26
-
-
0036425968
-
Improved optimization for the robust and accurate linear registration and motion correction of brain images
-
Jenkinson M., Bannister P., Brady M., Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002, 17(2):825-841.
-
(2002)
Neuroimage
, vol.17
, Issue.2
, pp. 825-841
-
-
Jenkinson, M.1
Bannister, P.2
Brady, M.3
Smith, S.4
-
27
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi R., John G. Wrappers for feature subset selection. Artif. Intell. 1997, 97:273-324.
-
(1997)
Artif. Intell.
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.2
-
29
-
-
67649135107
-
Circular analysis in systems neuroscience: the dangers of double dipping
-
May
-
Kriegeskorte N., Simmons W.K., Bellgowan P.S., Baker C.I. Circular analysis in systems neuroscience: the dangers of double dipping. Nat. Neurosci. 2009, 12(5):535-540. May.
-
(2009)
Nat. Neurosci.
, vol.12
, Issue.5
, pp. 535-540
-
-
Kriegeskorte, N.1
Simmons, W.K.2
Bellgowan, P.S.3
Baker, C.I.4
-
30
-
-
19344370474
-
Support vector machines for temporal classification of block design fMRI data
-
LaConte S., Strother S., Cherkassky V., Anderson J., Hu X. Support vector machines for temporal classification of block design fMRI data. Neuroimage 2005, 26(2):317-329. 10.1016/j.neuroimage.2005.01.048.
-
(2005)
Neuroimage
, vol.26
, Issue.2
, pp. 317-329
-
-
LaConte, S.1
Strother, S.2
Cherkassky, V.3
Anderson, J.4
Hu, X.5
-
31
-
-
35148882447
-
Real-time fMRI using brain-state classification
-
LaConte S.M., Peltier S.J., Hu X.P. Real-time fMRI using brain-state classification. Hum. Brain Mapp. 2007, 28(10):1033-1044. 10.1002/hbm.20326.
-
(2007)
Hum. Brain Mapp.
, vol.28
, Issue.10
, pp. 1033-1044
-
-
LaConte, S.M.1
Peltier, S.J.2
Hu, X.P.3
-
32
-
-
0038021028
-
A comparative study on feature selection and classification methods using gene expression profiles and proteomic pattern
-
Liu H., Li J., Wong L. A comparative study on feature selection and classification methods using gene expression profiles and proteomic pattern. Genomic Inform. 2002, 13:51-60.
-
(2002)
Genomic Inform.
, vol.13
, pp. 51-60
-
-
Liu, H.1
Li, J.2
Wong, L.3
-
33
-
-
0000169232
-
An algorithm for least-squares estimation of nonlinear parameters
-
Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 1963, 11:431-441.
-
(1963)
SIAM J. Appl. Math.
, vol.11
, pp. 431-441
-
-
Marquardt, D.1
-
34
-
-
33750737054
-
The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data
-
Mourão-Miranda J., Reynaud E., McGlone F., Calvert G., Brammer M. The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data. Neuroimage 2006, 33(4):1055-1065. 10.1016/j.neuroimage.2006.08.016.
-
(2006)
Neuroimage
, vol.33
, Issue.4
, pp. 1055-1065
-
-
Mourão-Miranda, J.1
Reynaud, E.2
McGlone, F.3
Calvert, G.4
Brammer, M.5
-
35
-
-
33644680231
-
Machine learning techniques for brain computer interfaces
-
Muller K.R., Krauledat M., Dornhege G., Curio G., Blankertz B. Machine learning techniques for brain computer interfaces. Biomed. Technol. 2004, 49(1):11-22.
-
(2004)
Biomed. Technol.
, vol.49
, Issue.1
, pp. 11-22
-
-
Muller, K.R.1
Krauledat, M.2
Dornhege, G.3
Curio, G.4
Blankertz, B.5
-
36
-
-
33748178966
-
Beyond mind-reading: multi-voxel pattern analysis of fMRI data
-
Norman K.A., Polyn S.M., Detre G.J., Haxby J.V. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 2006, 10(9):424-430. 10.1016/j.tics.2006.07.005.
-
(2006)
Trends Cogn. Sci.
, vol.10
, Issue.9
, pp. 424-430
-
-
Norman, K.A.1
Polyn, S.M.2
Detre, G.J.3
Haxby, J.V.4
-
38
-
-
65549168742
-
Machine learning classifiers and fMRI: a tutorial overview
-
Pereira F., Mitchell T., Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 2009, 45(1 Suppl):S199-S209. 10.1016/j.neuroimage.2008.11.007.
-
(2009)
Neuroimage
, vol.45
, Issue.1 SUPPL
-
-
Pereira, F.1
Mitchell, T.2
Botvinick, M.3
-
39
-
-
31744432037
-
Can cognitive processes be inferred from neuroimaging data?
-
Poldrack R.A. Can cognitive processes be inferred from neuroimaging data?. Trends Cogn. Sci. 2006, 10(2):59-63. 10.1016/j.tics.2005.12.004.
-
(2006)
Trends Cogn. Sci.
, vol.10
, Issue.2
, pp. 59-63
-
-
Poldrack, R.A.1
-
40
-
-
69249102387
-
Decodeing the large-scale structure of brain fucntion by classifying mental States across individuals
-
Nov
-
Poldrack R.A., Halchenko Y.O., Hanson S.J. Decodeing the large-scale structure of brain fucntion by classifying mental States across individuals. Psychol. Sci. 2009, 20(11):1364-1372. Nov.
-
(2009)
Psychol. Sci.
, vol.20
, Issue.11
, pp. 1364-1372
-
-
Poldrack, R.A.1
Halchenko, Y.O.2
Hanson, S.J.3
-
41
-
-
47949087138
-
A single-trial analytic framework for EEG analysis and its application to target detection and classification
-
Aug 15
-
Poolman P., Frank R.M., Luu P., Pederson S.M., Tucker D.M. A single-trial analytic framework for EEG analysis and its application to target detection and classification. Neuroimage 2008, 42(2):787-798. Aug 15.
-
(2008)
Neuroimage
, vol.42
, Issue.2
, pp. 787-798
-
-
Poolman, P.1
Frank, R.M.2
Luu, P.3
Pederson, S.M.4
Tucker, D.M.5
-
43
-
-
79955029217
-
-
A Mind-Reading Machine. Bell Laboratories Memorandum.
-
Shannon, CE. (1953). A Mind-Reading Machine. Bell Laboratories Memorandum.
-
(1953)
-
-
Shannon, C.E.1
-
44
-
-
0036742197
-
Accurate, robust, and automated longitudinal and cross-sectional brain change analysis
-
Smith S.M., Zhang Y., Jenkinson M., Chen J., Matthews P.M., Federico A., et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 2002, 17(1):479-489.
-
(2002)
Neuroimage
, vol.17
, Issue.1
, pp. 479-489
-
-
Smith, S.M.1
Zhang, Y.2
Jenkinson, M.3
Chen, J.4
Matthews, P.M.5
Federico, A.6
-
45
-
-
7044228130
-
Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis
-
Strother S., La Conte S., Hansen L.K., Anderson J., Zhang J., Rottenberg D., Pulapura S. Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis. NeuroImage 2004, 23:S196-S207.
-
(2004)
NeuroImage
, vol.23
-
-
Strother, S.1
La Conte, S.2
Hansen, L.K.3
Anderson, J.4
Zhang, J.5
Rottenberg, D.6
Pulapura, S.7
-
47
-
-
37849019238
-
Automatic independent component labeling for artifact removal in fMRI
-
Tohka J., Foerde K., Aron A.R., Tom S.M., Toga A.W., Poldrack R.A. Automatic independent component labeling for artifact removal in fMRI. Neuroimage 2008, 39(3):1227-1245. 10.1016/j.neuroimage.2007.10.013.
-
(2008)
Neuroimage
, vol.39
, Issue.3
, pp. 1227-1245
-
-
Tohka, J.1
Foerde, K.2
Aron, A.R.3
Tom, S.M.4
Toga, A.W.5
Poldrack, R.A.6
-
50
-
-
79955001177
-
-
No Free Lunch Theorems for Search. Technical Report SFI-TR-95-02-010 (Santa Fe Institute).
-
Wolpert, D.H., Macready, W.G., David, H., William, G., 1995. No Free Lunch Theorems for Search. Technical Report SFI-TR-95-02-010 (Santa Fe Institute).
-
(1995)
-
-
Wolpert, D.H.1
Macready, W.G.2
David, H.3
William, G.4
-
51
-
-
55349089531
-
Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns
-
Yamashita O., Sato M., Yoshioka T., Tong F., Kamitani Y. Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns. Neuroimage 2008, 42(4):1414-1429. 10.1016/j.neuroimage.2008.05.050.
-
(2008)
Neuroimage
, vol.42
, Issue.4
, pp. 1414-1429
-
-
Yamashita, O.1
Sato, M.2
Yoshioka, T.3
Tong, F.4
Kamitani, Y.5
|