-
1
-
-
0035499267
-
Stem cells, cancer, and cancer stem cells
-
Reya T, Morrison SJ, Clarke MF and Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001; 414(6859):105-111.
-
(2001)
Nature
, vol.414
, Issue.6859
, pp. 105-111
-
-
Reya, T.1
Morrison, S.J.2
Clarke, M.F.3
Weissman, I.L.4
-
2
-
-
58149380742
-
Stem cell concepts renew cancer research
-
Dick JE. Stem cell concepts renew cancer research. Blood. 2008; 112(13):4793-4807.
-
(2008)
Blood
, vol.112
, Issue.13
, pp. 4793-4807
-
-
Dick, J.E.1
-
4
-
-
84860873820
-
The role of cancer stem cells in relapse of solid tumors
-
Yu Y, Ramena G and Elble RC. The role of cancer stem cells in relapse of solid tumors. Front Biosci (Elite Ed). 2012; 4:1528-1541.
-
(2012)
Front Biosci (Elite Ed)
, vol.4
, pp. 1528-1541
-
-
Yu, Y.1
Ramena, G.2
Elble, R.C.3
-
5
-
-
84860879245
-
Cancer stem cells and resistance to chemo and radio therapy
-
Malik B and Nie D. Cancer stem cells and resistance to chemo and radio therapy. Front Biosci (Elite Ed). 2012; 4:2142-2149.
-
(2012)
Front Biosci (Elite Ed)
, vol.4
, pp. 2142-2149
-
-
Malik, B.1
Nie, D.2
-
6
-
-
84883165709
-
Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy
-
Chapter 14:Unit 14.25
-
Bao B, Ahmad A, Azmi AS, Ali S and Sarkar FH. Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol. 2013; Chapter 14:Unit 14.25.
-
(2013)
Curr Protoc Pharmacol
-
-
Bao, B.1
Ahmad, A.2
Azmi, A.S.3
Ali, S.4
Sarkar, F.H.5
-
7
-
-
75949104197
-
Gain of antitumor functions and induction of differentiation in cancer stem cells contribute to complete cure and no relapse
-
Garg M. Gain of antitumor functions and induction of differentiation in cancer stem cells contribute to complete cure and no relapse. Crit Rev Oncog. 2009; 15(1-2):65-90.
-
(2009)
Crit Rev Oncog
, vol.15
, Issue.1-2
, pp. 65-90
-
-
Garg, M.1
-
9
-
-
55949123090
-
PET-CT in oncology: making the most of CT
-
Miles KA. PET-CT in oncology: making the most of CT. Cancer Imaging. 2008; 8 Spec No A:S87-93.
-
(2008)
Cancer Imaging
, vol.8
, pp. S87-S93
-
-
Miles, K.A.1
-
10
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
Hanahan D and Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646-674.
-
(2011)
Cell
, vol.144
, Issue.5
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
11
-
-
84861964103
-
New aspects of the Warburg effect in cancer cell biology
-
Bensinger SJ and Christofk HR. New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol. 2012; 23(4):352-361.
-
(2012)
Semin Cell Dev Biol
, vol.23
, Issue.4
, pp. 352-361
-
-
Bensinger, S.J.1
Christofk, H.R.2
-
14
-
-
84877752572
-
Stalling the engine of resistance: targeting cancer metabolism to overcome therapeutic resistance
-
Butler EB, Zhao Y, Munoz-Pinedo C, Lu J and Tan M. Stalling the engine of resistance: targeting cancer metabolism to overcome therapeutic resistance. Cancer Res. 2013; 73(9):2709-2717.
-
(2013)
Cancer Res
, vol.73
, Issue.9
, pp. 2709-2717
-
-
Butler, E.B.1
Zhao, Y.2
Munoz-Pinedo, C.3
Lu, J.4
Tan, M.5
-
15
-
-
84890159876
-
Cancer cell metabolism: implications for therapeutic targets
-
Jang M, Kim SS and Lee J. Cancer cell metabolism: implications for therapeutic targets. Exp Mol Med. 2013; 45:e45.
-
(2013)
Exp Mol Med
, vol.45
-
-
Jang, M.1
Kim, S.S.2
Lee, J.3
-
16
-
-
84875890762
-
Targeting cellular metabolism to improve cancer therapeutics
-
Zhao Y, Butler EB and Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2013; 4:e532.
-
(2013)
Cell Death Dis
, vol.4
-
-
Zhao, Y.1
Butler, E.B.2
Tan, M.3
-
17
-
-
84873024287
-
Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK
-
Sato A, Sunayama J, Okada M, Watanabe E, Seino S, Shibuya K, Suzuki K, Narita Y, Shibui S, Kayama T and Kitanaka C. Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK. Stem Cells Transl Med. 2012; 1(11):811-824.
-
(2012)
Stem Cells Transl Med
, vol.1
, Issue.11
, pp. 811-824
-
-
Sato, A.1
Sunayama, J.2
Okada, M.3
Watanabe, E.4
Seino, S.5
Shibuya, K.6
Suzuki, K.7
Narita, Y.8
Shibui, S.9
Kayama, T.10
Kitanaka, C.11
-
18
-
-
84872478184
-
Expression of glucose transporters in cancers
-
Szablewski L. Expression of glucose transporters in cancers. Biochim Biophys Acta. 2013; 1835(2):164-169.
-
(2013)
Biochim Biophys Acta
, vol.1835
, Issue.2
, pp. 164-169
-
-
Szablewski, L.1
-
19
-
-
77649336663
-
Metabolic genes in cancer: their roles in tumor progression and clinical implications
-
Furuta E, Okuda H, Kobayashi A and Watabe K. Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim Biophys Acta. 2010; 1805(2):141-152.
-
(2010)
Biochim Biophys Acta
, vol.1805
, Issue.2
, pp. 141-152
-
-
Furuta, E.1
Okuda, H.2
Kobayashi, A.3
Watabe, K.4
-
20
-
-
57749111596
-
Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond
-
Ganapathy V, Thangaraju M and Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther. 2009; 121(1):29-40.
-
(2009)
Pharmacol Ther
, vol.121
, Issue.1
, pp. 29-40
-
-
Ganapathy, V.1
Thangaraju, M.2
Prasad, P.D.3
-
21
-
-
12944262229
-
Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer
-
Macheda ML, Rogers S and Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005; 202(3):654-662.
-
(2005)
J Cell Physiol
, vol.202
, Issue.3
, pp. 654-662
-
-
Macheda, M.L.1
Rogers, S.2
Best, J.D.3
-
22
-
-
84864875404
-
A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo
-
Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, Colvin R, Ding J, Tong L, Wu S, Hines J and Chen X. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther. 2012; 11(8):1672-1682.
-
(2012)
Mol Cancer Ther
, vol.11
, Issue.8
, pp. 1672-1682
-
-
Liu, Y.1
Cao, Y.2
Zhang, W.3
Bergmeier, S.4
Qian, Y.5
Akbar, H.6
Colvin, R.7
Ding, J.8
Tong, L.9
Wu, S.10
Hines, J.11
Chen, X.12
-
23
-
-
84890118522
-
Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway
-
Liu PP, Liao J, Tang ZJ, Wu WJ, Yang J, Zeng ZL, Hu Y, Wang P, Ju HQ, Xu RH and Huang P. Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway. Cell Death Differ. 2014; 21(1):124-135.
-
(2014)
Cell Death Differ
, vol.21
, Issue.1
, pp. 124-135
-
-
Liu, P.P.1
Liao, J.2
Tang, Z.J.3
Wu, W.J.4
Yang, J.5
Zeng, Z.L.6
Hu, Y.7
Wang, P.8
Ju, H.Q.9
Xu, R.H.10
Huang, P.11
-
24
-
-
80355146252
-
Glycolysis inhibition inactivates ABC transporters to restore drug sensitivity in malignant cells
-
Nakano A, Tsuji D, Miki H, Cui Q, El Sayed SM, Ikegame A, Oda A, Amou H, Nakamura S, Harada T, Fujii S, Kagawa K, Takeuchi K, Sakai A, Ozaki S, Okano K, et al. Glycolysis inhibition inactivates ABC transporters to restore drug sensitivity in malignant cells. PLoS One. 2011; 6(11):e27222.
-
(2011)
PLoS One
, vol.6
, Issue.11
-
-
Nakano, A.1
Tsuji, D.2
Miki, H.3
Cui, Q.4
El Sayed, S.M.5
Ikegame, A.6
Oda, A.7
Amou, H.8
Nakamura, S.9
Harada, T.10
Fujii, S.11
Kagawa, K.12
Takeuchi, K.13
Sakai, A.14
Ozaki, S.15
Okano, K.16
-
25
-
-
84871566320
-
Effective elimination of cancer stem cells by a novel drug combination strategy
-
Yuan S, Wang F, Chen G, Zhang H, Feng L, Wang L, Colman H, Keating MJ, Li X, Xu RH, Wang J and Huang P. Effective elimination of cancer stem cells by a novel drug combination strategy. Stem Cells. 2013; 31(1):23-34.
-
(2013)
Stem Cells
, vol.31
, Issue.1
, pp. 23-34
-
-
Yuan, S.1
Wang, F.2
Chen, G.3
Zhang, H.4
Feng, L.5
Wang, L.6
Colman, H.7
Keating, M.J.8
Li, X.9
Xu, R.H.10
Wang, J.11
Huang, P.12
-
26
-
-
80052722539
-
Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis
-
Zhou Y, Zhou Y, Shingu T, Feng L, Chen Z, Ogasawara M, Keating MJ, Kondo S and Huang P. Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis. J Biol Chem. 2011; 286(37):32843-32853.
-
(2011)
J Biol Chem
, vol.286
, Issue.37
, pp. 32843-32853
-
-
Zhou, Y.1
Zhou, Y.2
Shingu, T.3
Feng, L.4
Chen, Z.5
Ogasawara, M.6
Keating, M.J.7
Kondo, S.8
Huang, P.9
-
27
-
-
84884893986
-
Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake
-
Flavahan WA, Wu Q, Hitomi M, Rahim N, Kim Y, Sloan AE, Weil RJ, Nakano I, Sarkaria JN, Stringer BW, Day BW, Li M, Lathia JD, Rich JN and Hjelmeland AB. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci. 2013; 16(10):1373-1382.
-
(2013)
Nat Neurosci
, vol.16
, Issue.10
, pp. 1373-1382
-
-
Flavahan, W.A.1
Wu, Q.2
Hitomi, M.3
Rahim, N.4
Kim, Y.5
Sloan, A.E.6
Weil, R.J.7
Nakano, I.8
Sarkaria, J.N.9
Stringer, B.W.10
Day, B.W.11
Li, M.12
Lathia, J.D.13
Rich, J.N.14
Hjelmeland, A.B.15
-
28
-
-
84905041477
-
Inhibition of glucose turnover by 3-bromopyruvate counteracts pancreatic cancer stem cell features and sensitizes cells to gemcitabine
-
Isayev O, Rausch V, Bauer N, Liu L, Fan P, Zhang Y, Gladkich J, Nwaeburu CC, Mattern J, Mollenhauer M, Ruckert F, Zach S, Haberkorn U, Gross W, Schonsiegel F, Bazhin AV, et al. Inhibition of glucose turnover by 3-bromopyruvate counteracts pancreatic cancer stem cell features and sensitizes cells to gemcitabine. Oncotarget. 2014; 5(13):5177-5189.
-
(2014)
Oncotarget
, vol.5
, Issue.13
, pp. 5177-5189
-
-
Isayev, O.1
Rausch, V.2
Bauer, N.3
Liu, L.4
Fan, P.5
Zhang, Y.6
Gladkich, J.7
Nwaeburu, C.C.8
Mattern, J.9
Mollenhauer, M.10
Ruckert, F.11
Zach, S.12
Haberkorn, U.13
Gross, W.14
Schonsiegel, F.15
Bazhin, A.V.16
-
29
-
-
37449024702
-
The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis RJ, Lum JJ, Hatzivassiliou G and Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008; 7(1):11-20.
-
(2008)
Cell Metab
, vol.7
, Issue.1
, pp. 11-20
-
-
DeBerardinis, R.J.1
Lum, J.J.2
Hatzivassiliou, G.3
Thompson, C.B.4
-
31
-
-
84886636530
-
Pivotal role for ROS activation of p38 MAPK in the control of differentiation and tumor-initiating capacity of glioma-initiating cells
-
Sato A, Okada M, Shibuya K, Watanabe E, Seino S, Narita Y, Shibui S, Kayama T and Kitanaka C. Pivotal role for ROS activation of p38 MAPK in the control of differentiation and tumor-initiating capacity of glioma-initiating cells. Stem Cell Res. 2014; 12(1):119-131.
-
(2014)
Stem Cell Res
, vol.12
, Issue.1
, pp. 119-131
-
-
Sato, A.1
Okada, M.2
Shibuya, K.3
Watanabe, E.4
Seino, S.5
Narita, Y.6
Shibui, S.7
Kayama, T.8
Kitanaka, C.9
-
32
-
-
84881557242
-
Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer
-
Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Wheaton W, Chandel N, Laakso M, Muller WJ, Allen EL, Jha AK, Smolen GA, Clasquin MF, Robey RB and Hay N. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell. 2013; 24(2):213-228.
-
(2013)
Cancer Cell
, vol.24
, Issue.2
, pp. 213-228
-
-
Patra, K.C.1
Wang, Q.2
Bhaskar, P.T.3
Miller, L.4
Wang, Z.5
Wheaton, W.6
Chandel, N.7
Laakso, M.8
Muller, W.J.9
Allen, E.L.10
Jha, A.K.11
Smolen, G.A.12
Clasquin, M.F.13
Robey, R.B.14
Hay, N.15
-
33
-
-
59849092584
-
Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate
-
Pereira da Silva AP, El-Bacha T, Kyaw N, dos Santos RS, da-Silva WS, Almeida FC, Da Poian AT and Galina A. Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate. Biochem J. 2009; 417(3):717-726.
-
(2009)
Biochem J
, vol.417
, Issue.3
, pp. 717-726
-
-
Pereira da Silva, A.P.1
El-Bacha, T.2
Kyaw, N.3
dos Santos, R.S.4
da-Silva, W.S.5
Almeida, F.C.6
Da Poian, A.T.7
Galina, A.8
-
34
-
-
84905039972
-
Targeting the K-Ras-JNK axis eliminates cancer stem-like cells and prevents pancreatic tumor formation
-
Okada M, Shibuya K, Sato A, Seino S, Suzuki S, Seino M and Kitanaka C. Targeting the K-Ras-JNK axis eliminates cancer stem-like cells and prevents pancreatic tumor formation. Oncotarget. 2014; 5(13):5100-5112.
-
(2014)
Oncotarget
, vol.5
, Issue.13
, pp. 5100-5112
-
-
Okada, M.1
Shibuya, K.2
Sato, A.3
Seino, S.4
Suzuki, S.5
Seino, M.6
Kitanaka, C.7
-
35
-
-
84908679372
-
Requirement of JNK Signaling for Self-renewal and Tumor-initiating Capacity of Ovarian Cancer Stem Cells
-
in press
-
Seino M, Okada M, Shibuya K, Seino S, Suzuki S, Ohta T, Kurachi H and Kitanaka C. Requirement of JNK Signaling for Self-renewal and Tumor-initiating Capacity of Ovarian Cancer Stem Cells. ANTICANCER RESEARCH. 2014; in press.
-
(2014)
ANTICANCER RESEARCH
-
-
Seino, M.1
Okada, M.2
Shibuya, K.3
Seino, S.4
Suzuki, S.5
Ohta, T.6
Kurachi, H.7
Kitanaka, C.8
-
36
-
-
84873035497
-
PAQR3 modulates insulin signaling by shunting phosphoinositide 3-kinase p110alpha to the Golgi apparatus
-
Wang X, Wang L, Zhu L, Pan Y, Xiao F, Liu W, Wang Z, Guo F, Liu Y, Thomas WG and Chen Y. PAQR3 modulates insulin signaling by shunting phosphoinositide 3-kinase p110alpha to the Golgi apparatus. Diabetes. 2013; 62(2):444-456.
-
(2013)
Diabetes
, vol.62
, Issue.2
, pp. 444-456
-
-
Wang, X.1
Wang, L.2
Zhu, L.3
Pan, Y.4
Xiao, F.5
Liu, W.6
Wang, Z.7
Guo, F.8
Liu, Y.9
Thomas, W.G.10
Chen, Y.11
|