-
1
-
-
84865389203
-
Acute kidney injury
-
Bellomo R., Kellum J.A., Ronco C. Acute kidney injury. Lancet 2012, 380(9843):756-766. http://www.ncbi.nlm.nih.gov/pubmed/22617274, 10.1016/S0140-6736(11)61454-2.
-
(2012)
Lancet
, vol.380
, Issue.9843
, pp. 756-766
-
-
Bellomo, R.1
Kellum, J.A.2
Ronco, C.3
-
2
-
-
85015529555
-
National Kidney and Urologic Diseases Information Clearinghouse (NKUDIC): Kidney Disease Statistics for the United States
-
National Kidney and Urologic Diseases Information Clearinghouse (NKUDIC): Kidney Disease Statistics for the United States, 2012 .pdf. http://kidney.niddk.nih.gov/kudiseases/pubs/kustats/KU_Diseases_Stats_508.
-
(2012)
-
-
-
3
-
-
84903705384
-
Acute kidney injury and chronic kidney disease as interconnected syndromes
-
Chawla L.S., Eggers P.W., Star R.A., Kimmel P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. New EnglandJournalof Medicine 2014, 371(1):58-66. http://www.ncbi.nlm.nih.gov/pubmed/24988558, 10.1056/NEJMra1214243.
-
(2014)
New EnglandJournalof Medicine
, vol.371
, Issue.1
, pp. 58-66
-
-
Chawla, L.S.1
Eggers, P.W.2
Star, R.A.3
Kimmel, P.L.4
-
4
-
-
0002549377
-
The lysosome
-
De Duve C. The lysosome. ScientificAmerican 1963, 208:64-72. http://www.ncbi.nlm.nih.gov/pubmed/14025755, 10.1038/scientificamerican0563-64.
-
(1963)
ScientificAmerican
, vol.208
, pp. 64-72
-
-
De Duve, C.1
-
5
-
-
84873660610
-
Autophagy in human health and disease
-
Choi A.M., Ryter S.W., Levine B. Autophagy in human health and disease. NewEnglandJournalof Medicine 2013, 368(7):651-662. http://www.ncbi.nlm.nih.gov/pubmed/23406030, 10.1056/NEJMra1205406.
-
(2013)
NewEnglandJournalof Medicine
, vol.368
, Issue.7
, pp. 651-662
-
-
Choi, A.M.1
Ryter, S.W.2
Levine, B.3
-
6
-
-
34248139628
-
Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae
-
Suzuki K., Ohsumi Y. Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Letters 2007, 581(11):2156-2161. http://www.ncbi.nlm.nih.gov/pubmed/17382324, 10.1016/j.febslet.2007.01.096.
-
(2007)
FEBS Letters
, vol.581
, Issue.11
, pp. 2156-2161
-
-
Suzuki, K.1
Ohsumi, Y.2
-
7
-
-
84863843241
-
Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae
-
Motley A.M., Nuttall J.M., Hettema E.H. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO Journal 2012, 31(13):2852-2868. http://www.ncbi.nlm.nih.gov/pubmed/22643220, 10.1038/emboj.2012.151.
-
(2012)
EMBO Journal
, vol.31
, Issue.13
, pp. 2852-2868
-
-
Motley, A.M.1
Nuttall, J.M.2
Hettema, E.H.3
-
8
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung C.H., Jun C.B., Ro S.H., Kim Y.M., Otto N.M., Cao J., Kundu M., Kim D.H. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. MolecularBiology of theCell 2009, 20(7):1992-2003. http://www.ncbi.nlm.nih.gov/pubmed/19225151, 10.1091/mbc.E08-12-1249.
-
(2009)
MolecularBiology of theCell
, vol.20
, Issue.7
, pp. 1992-2003
-
-
Jung, C.H.1
Jun, C.B.2
Ro, S.H.3
Kim, Y.M.4
Otto, N.M.5
Cao, J.6
Kundu, M.7
Kim, D.H.8
-
9
-
-
84866061320
-
AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization
-
Mack H.I., Zheng B., Asara J.M., Thomas S.M. AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy 2012, 8(8):1197-1214. http://www.ncbi.nlm.nih.gov/pubmed/22932492, 10.4161/auto.20586.
-
(2012)
Autophagy
, vol.8
, Issue.8
, pp. 1197-1214
-
-
Mack, H.I.1
Zheng, B.2
Asara, J.M.3
Thomas, S.M.4
-
10
-
-
84893742616
-
Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase
-
Papinski D., Schuschnig M., Reiter W., Wilhelm L., Barnes C.A., Maiolica A., Hansmann I., Pfaffenwimmer T., Kijanska M., Stoffel I., Lee S.S., Brezovich A., Lou J.H., Turk B.E., Aebersold R., Ammerer G., Peter M., Kraft C. Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. MolecularCell 2014, 53(3):471-483. http://www.ncbi.nlm.nih.gov/pubmed/24440502, 10.1016/j.molcel.2013.12.011.
-
(2014)
MolecularCell
, vol.53
, Issue.3
, pp. 471-483
-
-
Papinski, D.1
Schuschnig, M.2
Reiter, W.3
Wilhelm, L.4
Barnes, C.A.5
Maiolica, A.6
Hansmann, I.7
Pfaffenwimmer, T.8
Kijanska, M.9
Stoffel, I.10
Lee, S.S.11
Brezovich, A.12
Lou, J.H.13
Turk, B.E.14
Aebersold, R.15
Ammerer, G.16
Peter, M.17
Kraft, C.18
-
11
-
-
84880331368
-
ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
-
Russell R.C., Tian Y., Yuan H., Park H.W., Chang Y.Y., Kim J., Kim H., Neufeld T.P., Dillin A., Guan K.L. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. NatureCell Biology 2013, 15(7):741-750. http://www.ncbi.nlm.nih.gov/pubmed/23685627, 10.1038/ncb2757.
-
(2013)
NatureCell Biology
, vol.15
, Issue.7
, pp. 741-750
-
-
Russell, R.C.1
Tian, Y.2
Yuan, H.3
Park, H.W.4
Chang, Y.Y.5
Kim, J.6
Kim, H.7
Neufeld, T.P.8
Dillin, A.9
Guan, K.L.10
-
12
-
-
84880343182
-
ULK1 targets Beclin-1 in autophagy
-
Nazarko V.Y., Zhong Q. ULK1 targets Beclin-1 in autophagy. NatureCell Biology 2013, 15(7):727-728. http://www.ncbi.nlm.nih.gov/pubmed/23817237, 10.1038/ncb2797.
-
(2013)
NatureCell Biology
, vol.15
, Issue.7
, pp. 727-728
-
-
Nazarko, V.Y.1
Zhong, Q.2
-
13
-
-
77951214016
-
Mammalian autophagy: core molecular machinery and signaling regulation
-
Yang Z., Klionsky D.J. Mammalian autophagy: core molecular machinery and signaling regulation. CurrentOpinionin Cell Biology 2010, 22(2):124-131. http://www.ncbi.nlm.nih.gov/pubmed/20034776, 10.1016/j.ceb.2009.11.014.
-
(2010)
CurrentOpinionin Cell Biology
, vol.22
, Issue.2
, pp. 124-131
-
-
Yang, Z.1
Klionsky, D.J.2
-
14
-
-
77953699711
-
Termination of autophagy and reformation of lysosomes regulated by mTOR
-
Yu L., McPhee C.K., Zheng L., Mardones G.A., Rong Y., Peng J., Mi N., Zhao Y., Liu Z., Wan F., Hailey D.W., Oorschot V., Klumperman J., Baehrecke E.H., Lenardo M.J. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 2010, 465(7300):942-946. http://www.ncbi.nlm.nih.gov/pubmed/20526321, 10.1038/nature09076.
-
(2010)
Nature
, vol.465
, Issue.7300
, pp. 942-946
-
-
Yu, L.1
McPhee, C.K.2
Zheng, L.3
Mardones, G.A.4
Rong, Y.5
Peng, J.6
Mi, N.7
Zhao, Y.8
Liu, Z.9
Wan, F.10
Hailey, D.W.11
Oorschot, V.12
Klumperman, J.13
Baehrecke, E.H.14
Lenardo, M.J.15
-
15
-
-
84891679916
-
Targeting mitochondrial dysfunction in lung diseases: emphasis on mitophagy
-
Sureshbabu A., Bhandari V. Targeting mitochondrial dysfunction in lung diseases: emphasis on mitophagy. Frontiers inPhysiology 2013, 4:384. http://www.ncbi.nlm.nih.gov/pubmed/24421769, 10.3389/fphys.2013.00384.
-
(2013)
Frontiers inPhysiology
, vol.4
, pp. 384
-
-
Sureshbabu, A.1
Bhandari, V.2
-
16
-
-
84863430453
-
Mitophagy: a complex mechanism of mitochondrial removal
-
Novak I. Mitophagy: a complex mechanism of mitochondrial removal. Antioxidants andRedox Signalling 2012, 17(5):794-802. http://www.ncbi.nlm.nih.gov/pubmed/22077334, 10.1089/ars.2011.4407.
-
(2012)
Antioxidants andRedox Signalling
, vol.17
, Issue.5
, pp. 794-802
-
-
Novak, I.1
-
17
-
-
84867273800
-
ROS-induced mitochondrial depolarization initiates PARK2/Parkin-dependent mitochondrial degradation by autophagy
-
Wang Y., Nartiss Y., Steipe B., McQuibban G.A., Kim P.K. ROS-induced mitochondrial depolarization initiates PARK2/Parkin-dependent mitochondrial degradation by autophagy. Autophagy 2012, 8(10):1462-1476. http://www.ncbi.nlm.nih.gov/pubmed/22889933, 10.4161/auto.21211.
-
(2012)
Autophagy
, vol.8
, Issue.10
, pp. 1462-1476
-
-
Wang, Y.1
Nartiss, Y.2
Steipe, B.3
McQuibban, G.A.4
Kim, P.K.5
-
18
-
-
84867740975
-
Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner
-
Frank M., Duvezin-Caubet S., Koob S., Occhipinti A., Jagasia R., Petcherski A., Ruonala M.O., Priault M., Salin B., Reichert A.S. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochimica etBiophysicaActa 2012, 1823(12):2297-2310. http://www.ncbi.nlm.nih.gov/pubmed/22917578, 10.1016/j.bbamcr.2012.08.007.
-
(2012)
Biochimica etBiophysicaActa
, vol.1823
, Issue.12
, pp. 2297-2310
-
-
Frank, M.1
Duvezin-Caubet, S.2
Koob, S.3
Occhipinti, A.4
Jagasia, R.5
Petcherski, A.6
Ruonala, M.O.7
Priault, M.8
Salin, B.9
Reichert, A.S.10
-
19
-
-
0030894162
-
Oxidative stress: oxidants and antioxidants
-
Sies H. Oxidative stress: oxidants and antioxidants. ExperimentalPhysiology 1997, 82(2):291-295. http://www.ncbi.nlm.nih.gov/pubmed/9129943, 10.1113/expphysiol.1997.sp004024.
-
(1997)
ExperimentalPhysiology
, vol.82
, Issue.2
, pp. 291-295
-
-
Sies, H.1
-
20
-
-
0038353176
-
Oxidative stress in end-stage renal disease: an emerging threat to patient outcome
-
Locatelli F., Canaud B., Eckardt K.U., Stenvinkel P., Wanner C., Zoccali C. Oxidative stress in end-stage renal disease: an emerging threat to patient outcome. NephrologyDialysisTransplantation 2003, 18(7):1272-1280. http://www.ncbi.nlm.nih.gov/pubmed/12808161, 10.1093/ndt/gfg074.
-
(2003)
NephrologyDialysisTransplantation
, vol.18
, Issue.7
, pp. 1272-1280
-
-
Locatelli, F.1
Canaud, B.2
Eckardt, K.U.3
Stenvinkel, P.4
Wanner, C.5
Zoccali, C.6
-
21
-
-
0023655369
-
Protein damage and degradation by oxygen radicals. I. General aspects
-
Davies K.J. Protein damage and degradation by oxygen radicals. I. General aspects. Journalof BiologicalChemistry 1987, 262(20):9895-9901. http://www.ncbi.nlm.nih.gov/pubmed/3036875.
-
(1987)
Journalof BiologicalChemistry
, vol.262
, Issue.20
, pp. 9895-9901
-
-
Davies, K.J.1
-
22
-
-
0023886170
-
DNA damage and oxygen radical toxicity
-
Imlay J.A., Linn S. DNA damage and oxygen radical toxicity. Science 1988, 240(4857):1302-1309. http://www.ncbi.nlm.nih.gov/pubmed/3287616, 10.1126/science.3287616.
-
(1988)
Science
, vol.240
, Issue.4857
, pp. 1302-1309
-
-
Imlay, J.A.1
Linn, S.2
-
23
-
-
0022644072
-
Free radicals, lipids and protein degradation
-
Wolff S.P., Garner A., Dean R.T. Free radicals, lipids and protein degradation. Trends in Biochemical Sciences 1986, 11(1):27-31. 10.1016/0968-0004(86)90228-8.
-
(1986)
Trends in Biochemical Sciences
, vol.11
, Issue.1
, pp. 27-31
-
-
Wolff, S.P.1
Garner, A.2
Dean, R.T.3
-
24
-
-
35348976123
-
Deficiency of heme oxygenase-1 impairs renal hemodynamics and exaggerates systemic inflammatory responses to renal ischemia
-
Tracz M.J., Juncos J.P., Croatt A.J., Ackerman A.W., Grande J.P., Knutson K.L., Kane G.C., Terzic A., Griffin M.D., Nath K.A. Deficiency of heme oxygenase-1 impairs renal hemodynamics and exaggerates systemic inflammatory responses to renal ischemia. Kidney International 2007, 72(9):1073-1080. http://www.ncbi.nlm.nih.gov/pubmed/17728706, 10.1038/sj.ki.5002471.
-
(2007)
Kidney International
, vol.72
, Issue.9
, pp. 1073-1080
-
-
Tracz, M.J.1
Juncos, J.P.2
Croatt, A.J.3
Ackerman, A.W.4
Grande, J.P.5
Knutson, K.L.6
Kane, G.C.7
Terzic, A.8
Griffin, M.D.9
Nath, K.A.10
-
25
-
-
84908635178
-
TRPM2 mediates ischemic kidney injury and oxidant stress through RAC1
-
Gao G., Wang W., Tadagavadi R.K., Briley N.E., Love M.I., Miller B.A., Reeves W.B. TRPM2 mediates ischemic kidney injury and oxidant stress through RAC1. Journal ofClinicalInvestigation 2014, 124(11):4989-5001. http://www.ncbi.nlm.nih.gov/pubmed/25295536, 10.1172/JCI76042.
-
(2014)
Journal ofClinicalInvestigation
, vol.124
, Issue.11
, pp. 4989-5001
-
-
Gao, G.1
Wang, W.2
Tadagavadi, R.K.3
Briley, N.E.4
Love, M.I.5
Miller, B.A.6
Reeves, W.B.7
-
26
-
-
84918831897
-
Renal redox dysregulation in AKI: application for oxidative stress marker of AKI
-
Kasuno K., Shirakawa K., Yoshida H., Mori K., Kimura H., Takahashi N., Nobukawa Y., Shigemi K., Tanabe S., Yamada N., Koshiji T., Nogaki F., Kusano H., Ono T., Uno K., Nakamura H., Yodoi J., Muso E., Iwano M. Renal redox dysregulation in AKI: application for oxidative stress marker of AKI. AmericanJournal ofPhysiology.Renal Physiology 2014, 307(12):F1342-F1351. http://www.ncbi.nlm.nih.gov/pubmed/25350977, 10.1152/ajprenal.00381.2013.
-
(2014)
AmericanJournal ofPhysiology.Renal Physiology
, vol.307
, Issue.12
, pp. F1342-F1351
-
-
Kasuno, K.1
Shirakawa, K.2
Yoshida, H.3
Mori, K.4
Kimura, H.5
Takahashi, N.6
Nobukawa, Y.7
Shigemi, K.8
Tanabe, S.9
Yamada, N.10
Koshiji, T.11
Nogaki, F.12
Kusano, H.13
Ono, T.14
Uno, K.15
Nakamura, H.16
Yodoi, J.17
Muso, E.18
Iwano, M.19
-
27
-
-
84948428212
-
CCAAT-enhancer-binding protein homologous protein deficiency attenuates oxidative stress and renal ischemia-reperfusion injury
-
Chen B.L., Sheu M.L., Tsai K.S., Lan K.C., Guan S.S., Wu C.T., Chen L.P., Hung K.Y., Huang J.W., Chiang C.K., Liu S.H. CCAAT-enhancer-binding protein homologous protein deficiency attenuates oxidative stress and renal ischemia-reperfusion injury. Antioxidants andRedox Signalling 2014, http://www.ncbi.nlm.nih.gov/pubmed/25178318, 10.1089/ars.2013.5768.
-
(2014)
Antioxidants andRedox Signalling
-
-
Chen, B.L.1
Sheu, M.L.2
Tsai, K.S.3
Lan, K.C.4
Guan, S.S.5
Wu, C.T.6
Chen, L.P.7
Hung, K.Y.8
Huang, J.W.9
Chiang, C.K.10
Liu, S.H.11
-
28
-
-
84919632586
-
Autophagy in diabetic nephropathy
-
Ding Y., Choi M.E. Autophagy in diabetic nephropathy. Journal ofEndocrinology 2015, 224(1):R15-R30. http://www.ncbi.nlm.nih.gov/pubmed/25349246, 10.1530/JOE-14-0437.
-
(2015)
Journal ofEndocrinology
, vol.224
, Issue.1
, pp. R15-R30
-
-
Ding, Y.1
Choi, M.E.2
-
29
-
-
84878252198
-
Role of Nox2 in diabetic kidney disease
-
You Y.H., Okada S., Ly S., Jandeleit-Dahm K., Barit D., Namikoshi T., Sharma K. Role of Nox2 in diabetic kidney disease. AmericanJournal ofPhysiology.Renal Physiology 2013, 304(7):F840-F848. http://www.ncbi.nlm.nih.gov/pubmed/23389458, 10.1152/ajprenal.00511.2012.
-
(2013)
AmericanJournal ofPhysiology.Renal Physiology
, vol.304
, Issue.7
, pp. F840-F848
-
-
You, Y.H.1
Okada, S.2
Ly, S.3
Jandeleit-Dahm, K.4
Barit, D.5
Namikoshi, T.6
Sharma, K.7
-
30
-
-
84885054027
-
NADPH oxidases, reactive oxygen species, and the kidney: friend and foe
-
Sedeek M., Nasrallah R., Touyz R.M., Hébert R.L. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. Journalof the AmericanSociety ofNephrology 2013, 24(10):1512-1518. http://www.ncbi.nlm.nih.gov/pubmed/23970124, 10.1681/ASN.2012111112.
-
(2013)
Journalof the AmericanSociety ofNephrology
, vol.24
, Issue.10
, pp. 1512-1518
-
-
Sedeek, M.1
Nasrallah, R.2
Touyz, R.M.3
Hébert, R.L.4
-
31
-
-
84905380684
-
Complement-dependent NADPH oxidase enzyme activation in renal ischemia/reperfusion injury
-
Simone S., Rascio F., Castellano G., Divella C., Chieti A., Ditonno P., Battaglia M., Crovace A., Staffieri F., Oortwijn B., Stallone G., Gesualdo L., Pertosa G., Grandaliano G. Complement-dependent NADPH oxidase enzyme activation in renal ischemia/reperfusion injury. Free RadicalBiologyand Medicine 2014, 74:263-273. http://www.ncbi.nlm.nih.gov/pubmed/25017967, 10.1016/j.freeradbiomed.2014.07.003.
-
(2014)
Free RadicalBiologyand Medicine
, vol.74
, pp. 263-273
-
-
Simone, S.1
Rascio, F.2
Castellano, G.3
Divella, C.4
Chieti, A.5
Ditonno, P.6
Battaglia, M.7
Crovace, A.8
Staffieri, F.9
Oortwijn, B.10
Stallone, G.11
Gesualdo, L.12
Pertosa, G.13
Grandaliano, G.14
-
32
-
-
84901452658
-
Nephropathy and elevated BP in mice with podocyte-specific NADPH oxidase 5 expression
-
Holterman C.E., Thibodeau J.F., Towaij C., Gutsol A., Montezano A.C., Parks R.J., Cooper M.E., Touyz R.M., Kennedy C.R. Nephropathy and elevated BP in mice with podocyte-specific NADPH oxidase 5 expression. Journal of theAmericanSociety ofNephrology 2014, 25(4):784-797. http://www.ncbi.nlm.nih.gov/pubmed/24262797, 10.1681/ASN.2013040371.
-
(2014)
Journal of theAmericanSociety ofNephrology
, vol.25
, Issue.4
, pp. 784-797
-
-
Holterman, C.E.1
Thibodeau, J.F.2
Towaij, C.3
Gutsol, A.4
Montezano, A.C.5
Parks, R.J.6
Cooper, M.E.7
Touyz, R.M.8
Kennedy, C.R.9
-
33
-
-
3242772187
-
Ischemic acute renal failure: an inflammatory disease?
-
Bonventre J.V., Zuk A. Ischemic acute renal failure: an inflammatory disease?. Kidney International 2004, 66(2):480-485. http://www.ncbi.nlm.nih.gov/pubmed/15253693, 10.1111/j.1523-1755.2004.761_2.x.
-
(2004)
Kidney International
, vol.66
, Issue.2
, pp. 480-485
-
-
Bonventre, J.V.1
Zuk, A.2
-
34
-
-
84877662957
-
Oxidative stress induces inactivation of protein phosphatase 2A, promoting proinflammatory NF-kappaB in aged rat kidney
-
Jin Jung K., Hyun Kim D., Kyeong Lee E., Woo Song C., Pal Yu B., Young Chung H. Oxidative stress induces inactivation of protein phosphatase 2A, promoting proinflammatory NF-kappaB in aged rat kidney. Free RadicalBiology andMedicine 2013, 61:206-217. http://www.ncbi.nlm.nih.gov/pubmed/23583701, 10.1016/j.freeradbiomed.2013.04.005.
-
(2013)
Free RadicalBiology andMedicine
, vol.61
, pp. 206-217
-
-
Jin Jung, K.1
Hyun Kim, D.2
Kyeong Lee, E.3
Woo Song, C.4
Pal Yu, B.5
Young Chung, H.6
-
35
-
-
84890324182
-
Adipokines as a link between obesity and chronic kidney disease
-
Briffa J.F., McAinch A.J., Poronnik P., Hryciw D.H. Adipokines as a link between obesity and chronic kidney disease. AmericanJournal ofPhysiology.Renal Physiology 2013, 305(12):F1629-F1636. http://www.ncbi.nlm.nih.gov/pubmed/24107418, 10.1152/ajprenal.00263.2013.
-
(2013)
AmericanJournal ofPhysiology.Renal Physiology
, vol.305
, Issue.12
, pp. F1629-F1636
-
-
Briffa, J.F.1
McAinch, A.J.2
Poronnik, P.3
Hryciw, D.H.4
-
36
-
-
84925147408
-
Therapeutic targets for treating fibrotic kidney diseases
-
Lee S.Y., Kim S.I., Choi M.E. Therapeutic targets for treating fibrotic kidney diseases. TranslationalResearch 2014, http://www.ncbi.nlm.nih.gov/pubmed/25176603, 10.1016/j.trsl.2014.07.010.
-
(2014)
TranslationalResearch
-
-
Lee, S.Y.1
Kim, S.I.2
Choi, M.E.3
-
37
-
-
36249011527
-
Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy
-
Chien C.T., Shyue S.K., Lai M.K. Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy. Transplant 2007, 84(9):1183-1190. http://www.ncbi.nlm.nih.gov/pubmed/17998875, 10.1097/01.tp.0000287334.38933.e3.
-
(2007)
Transplant
, vol.84
, Issue.9
, pp. 1183-1190
-
-
Chien, C.T.1
Shyue, S.K.2
Lai, M.K.3
-
38
-
-
39149113436
-
Participation of autophagy in renal ischemia/reperfusion injury
-
Suzuki C., Isaka Y., Takabatake Y., Tanaka H., Koike M., Shibata M., Uchiyama Y., Takahara S., Imai E. Participation of autophagy in renal ischemia/reperfusion injury. Biochemicaland BiophysicalResearchCommuni 2008, 368(1):100-106. http://www.ncbi.nlm.nih.gov/pubmed/18222169, 10.1016/j.bbrc.2008.01.059.
-
(2008)
Biochemicaland BiophysicalResearchCommuni
, vol.368
, Issue.1
, pp. 100-106
-
-
Suzuki, C.1
Isaka, Y.2
Takabatake, Y.3
Tanaka, H.4
Koike, M.5
Shibata, M.6
Uchiyama, Y.7
Takahara, S.8
Imai, E.9
-
39
-
-
77749264299
-
Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury
-
Jiang M., Liu K., Luo J., Dong Z. Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. AmericanJournal ofPathology 2010, 176(3):1181-1192. http://www.ncbi.nlm.nih.gov/pubmed/20075199, 10.2353/ajpath.2010.090594.
-
(2010)
AmericanJournal ofPathology
, vol.176
, Issue.3
, pp. 1181-1192
-
-
Jiang, M.1
Liu, K.2
Luo, J.3
Dong, Z.4
-
40
-
-
84862635122
-
Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury
-
Liu S., Hartleben B., Kretz O., Wiech T., Igarashi P., Mizushima N., Walz G., Huber T.B. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 2012, 8(5):826-837. http://www.ncbi.nlm.nih.gov/pubmed/22617445, 10.4161/auto.19419.
-
(2012)
Autophagy
, vol.8
, Issue.5
, pp. 826-837
-
-
Liu, S.1
Hartleben, B.2
Kretz, O.3
Wiech, T.4
Igarashi, P.5
Mizushima, N.6
Walz, G.7
Huber, T.B.8
-
41
-
-
84870580153
-
Autophagy in proximal tubules protects against acute kidney injury
-
Jiang M., Wei Q., Dong G., Komatsu M., Su Y., Dong Z. Autophagy in proximal tubules protects against acute kidney injury. Kidney International 2012, 82(12):1271-1283. http://www.ncbi.nlm.nih.gov/pubmed/22854643, 10.1038/ki.2012.261.
-
(2012)
Kidney International
, vol.82
, Issue.12
, pp. 1271-1283
-
-
Jiang, M.1
Wei, Q.2
Dong, G.3
Komatsu, M.4
Su, Y.5
Dong, Z.6
-
42
-
-
84863229562
-
The decline of autophagy contributes to proximal tubular dysfunction during sepsis
-
Hsiao H.W., Tsai K.L., Wang L.F., Chen Y.H., Chiang P.C., Chuang S.M., Hsu C. The decline of autophagy contributes to proximal tubular dysfunction during sepsis. Shock 2012, 37(3):289-296. http://www.ncbi.nlm.nih.gov/pubmed/22089196, 10.1097/SHK.0b013e318240b52a.
-
(2012)
Shock
, vol.37
, Issue.3
, pp. 289-296
-
-
Hsiao, H.W.1
Tsai, K.L.2
Wang, L.F.3
Chen, Y.H.4
Chiang, P.C.5
Chuang, S.M.6
Hsu, C.7
-
43
-
-
84880799079
-
Augmenting autophagy to treat acute kidney injury during endotoxemia in mice
-
Howell G.M., Gomez H., Collage R.D., Loughran P., Zhang X., Escobar D.A., Billiar T.R., Zuckerbraun B.S., Rosengart M.R. Augmenting autophagy to treat acute kidney injury during endotoxemia in mice. PLOS ONE 2013, 8(7):e69520. http://www.ncbi.nlm.nih.gov/pubmed/23936035, 10.1371/journal.pone.0069520.
-
(2013)
PLOS ONE
, vol.8
, Issue.7
, pp. e69520
-
-
Howell, G.M.1
Gomez, H.2
Collage, R.D.3
Loughran, P.4
Zhang, X.5
Escobar, D.A.6
Billiar, T.R.7
Zuckerbraun, B.S.8
Rosengart, M.R.9
-
44
-
-
84919676763
-
Autophagy regulates TGF-beta expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction
-
Ding Y., Kim S.L., Lee S.Y., Koo J.K., Wang Z., Choi M.E. Autophagy regulates TGF-beta expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. Journal of theAmericanSociety ofNephrology 2014, 25(12):2835-2846. http://www.ncbi.nlm.nih.gov/pubmed/24854279, 10.1681/ASN.2013101068.
-
(2014)
Journal of theAmericanSociety ofNephrology
, vol.25
, Issue.12
, pp. 2835-2846
-
-
Ding, Y.1
Kim, S.L.2
Lee, S.Y.3
Koo, J.K.4
Wang, Z.5
Choi, M.E.6
-
45
-
-
1542283812
-
In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
-
Mizushima N., Yamamoto A., Matsui M., Yoshimori T., Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. MolecularBiology of theCell 2004, 15(3):1101-1111. http://www.ncbi.nlm.nih.gov/pubmed/14699058, 10.1091/mbc.E03-09-0704.
-
(2004)
MolecularBiology of theCell
, vol.15
, Issue.3
, pp. 1101-1111
-
-
Mizushima, N.1
Yamamoto, A.2
Matsui, M.3
Yoshimori, T.4
Ohsumi, Y.5
-
46
-
-
84929311516
-
Deficient autophagy results in mitochondrial dysfunction and FSGS
-
Kawakami T., Gomez I.G., Ren S., Hudkins K., Roach A., Alpers C.E., Shankland S.J., D'Agati V.D., Duffield J.S. Deficient autophagy results in mitochondrial dysfunction and FSGS. Journal of theAmericanSociety ofNephrology 2014, http://www.ncbi.nlm.nih.gov/pubmed/25406339, 10.1681/ASN.2013111202.
-
(2014)
Journal of theAmericanSociety ofNephrology
-
-
Kawakami, T.1
Gomez, I.G.2
Ren, S.3
Hudkins, K.4
Roach, A.5
Alpers, C.E.6
Shankland, S.J.7
D'Agati, V.D.8
Duffield, J.S.9
-
47
-
-
34848920863
-
ROS, mitochondria and the regulation of autophagy
-
Scherz-Shouval R., Elazar Z. ROS, mitochondria and the regulation of autophagy. Trends in Cell Biology 2007, 17(9):422-427. http://www.ncbi.nlm.nih.gov/pubmed/17804237, 10.1016/j.tcb.2007.07.009.
-
(2007)
Trends in Cell Biology
, vol.17
, Issue.9
, pp. 422-427
-
-
Scherz-Shouval, R.1
Elazar, Z.2
-
48
-
-
77957674533
-
Under the ROS...thiol network is the principal suspect for autophagy commitment
-
Filomeni G., Desideri E., Cardaci S., Rotilio G., Ciriolo M.R. Under the ROS...thiol network is the principal suspect for autophagy commitment. Autophagy 2010, 6(7):999-1005. http://www.ncbi.nlm.nih.gov/pubmed/20639698, 10.4161/auto.6.7.12754.
-
(2010)
Autophagy
, vol.6
, Issue.7
, pp. 999-1005
-
-
Filomeni, G.1
Desideri, E.2
Cardaci, S.3
Rotilio, G.4
Ciriolo, M.R.5
-
49
-
-
77649265091
-
The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
-
Komatsu M., Kurokawa H., Waguri S., Taguchi K., Kobayashi A., Ichimura Y., Sou Y.S., Ueno I., Sakamoto A., Tong K.I., Kim M., Nishito Y., Iemura S., Natsume T., Ueno T., Kominami E., Motohashi H., Tanaka K., Yamamoto M. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. NatureCell Biology 2010, 12(3):213-223. http://www.ncbi.nlm.nih.gov/pubmed/20173742, 10.1038/ncb2021.
-
(2010)
NatureCell Biology
, vol.12
, Issue.3
, pp. 213-223
-
-
Komatsu, M.1
Kurokawa, H.2
Waguri, S.3
Taguchi, K.4
Kobayashi, A.5
Ichimura, Y.6
Sou, Y.S.7
Ueno, I.8
Sakamoto, A.9
Tong, K.I.10
Kim, M.11
Nishito, Y.12
Iemura, S.13
Natsume, T.14
Ueno, T.15
Kominami, E.16
Motohashi, H.17
Tanaka, K.18
Yamamoto, M.19
-
50
-
-
84872137966
-
Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage
-
Bae S.H., Sung S.H., Oh S.Y., Lim J.M., Lee S.K., Park Y.N., Lee H.E., Kang D., Rhee S.G. Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metabolism 2013, 17(1):73-84. http://www.ncbi.nlm.nih.gov/pubmed/23274085, 10.1016/j.cmet.2012.12.002.
-
(2013)
Cell Metabolism
, vol.17
, Issue.1
, pp. 73-84
-
-
Bae, S.H.1
Sung, S.H.2
Oh, S.Y.3
Lim, J.M.4
Lee, S.K.5
Park, Y.N.6
Lee, H.E.7
Kang, D.8
Rhee, S.G.9
-
51
-
-
84865287281
-
Keap1 degradation by autophagy for the maintenance of redox homeostasis
-
Taguchi K., Fujikawa N., Komatsu M., Ishii T., Unno M., Akaike T., Motohashi H., Yamamoto M. Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proceedings of theNationalAcadamy ofSciencesUSA 2012, 109(34):13561-13566. http://www.ncbi.nlm.nih.gov/pubmed/22872865, 10.1073/pnas.1121572109.
-
(2012)
Proceedings of theNationalAcadamy ofSciencesUSA
, vol.109
, Issue.34
, pp. 13561-13566
-
-
Taguchi, K.1
Fujikawa, N.2
Komatsu, M.3
Ishii, T.4
Unno, M.5
Akaike, T.6
Motohashi, H.7
Yamamoto, M.8
-
52
-
-
84939986310
-
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
-
Galluzzi L., Bravo-San Pedro J.M., Vitale I., Aaronson S.A., Abrams J.M., Adam D., Alnemri E.S., Altucci L., Andrews D., Annicchiarico-Petruzzelli M., Baehrecke E.H., Bazan N.G., Bertrand M.J., Bianchi K., Blagosklonny M.V., Blomgren K., Borner C., Bredesen D.E., Brenner C., Campanella M., Candi E., Cecconi F., Chan F.K., Chandel N.S., Cheng E.H., Chipuk J.E., Cidlowski J.A., Ciechanover A., Dawson T.M., Dawson V.L., De Laurenzi V., De Maria R., Debatin K.M., Di Daniele N., Dixit V.M., Dynlacht B.D., El-Deiry W.S., Fimia G.M., Flavell R.A., Fulda S., Garrido C., Gougeon M.L., Green D.R., Gronemeyer H., Hajnoczky G., Hardwick J.M., Hengartner M.O., Ichijo H., Joseph B., Jost P.J., Kaufmann T., Kepp O., Klionsky D.J., Knight R.A., Kumar S., Lemasters J.J., Levine B., Linkermann A., Lipton S.A., Lockshin R.A., Lopez-Otin C., Lugli E., Madeo F., Malorni W., Marine J.C., Martin S.J., Martinou J.C., Medema J.P., Meier P., Melino S., Mizushima N., Moll U., Munoz-Pinedo C., Nunez G., Oberst A., Panaretakis T., Penninger J.M., Peter M.E., Piacentini M., Pinton P., Prehn J.H., Puthalakath H., Rabinovich G.A., Ravichandran K.S., Rizzuto R., Rodrigues C.M., Rubinsztein D.C., Rudel T., Shi Y., Simon H.U., Stockwell B.R., Szabadkai G., Tait S.W., Tang H.L., Tavernarakis N., Tsujimoto Y., Vanden Berghe T., Vandenabeele P., Villunger A., Wagner E.F., Walczak H., White E., Wood W.G., Yuan J., Zakeri Z., Zhivotovsky B., Melino G., Kroemer G. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation 2015, 22(1):58-73. http://www.ncbi.nlm.nih.gov/pubmed/25236395, 10.1038/cdd.2014.137.
-
(2015)
Cell Death and Differentiation
, vol.22
, Issue.1
, pp. 58-73
-
-
Galluzzi, L.1
Bravo-San Pedro, J.M.2
Vitale, I.3
Aaronson, S.A.4
Abrams, J.M.5
Adam, D.6
Alnemri, E.S.7
Altucci, L.8
Andrews, D.9
Annicchiarico-Petruzzelli, M.10
Baehrecke, E.H.11
Bazan, N.G.12
Bertrand, M.J.13
Bianchi, K.14
Blagosklonny, M.V.15
Blomgren, K.16
Borner, C.17
Bredesen, D.E.18
Brenner, C.19
Campanella, M.20
Candi, E.21
Cecconi, F.22
Chan, F.K.23
Chandel, N.S.24
Cheng, E.H.25
Chipuk, J.E.26
Cidlowski, J.A.27
Ciechanover, A.28
Dawson, T.M.29
Dawson, V.L.30
De Laurenzi, V.31
De Maria, R.32
Debatin, K.M.33
Di Daniele, N.34
Dixit, V.M.35
Dynlacht, B.D.36
El-Deiry, W.S.37
Fimia, G.M.38
Flavell, R.A.39
Fulda, S.40
Garrido, C.41
Gougeon, M.L.42
Green, D.R.43
Gronemeyer, H.44
Hajnoczky, G.45
Hardwick, J.M.46
Hengartner, M.O.47
Ichijo, H.48
Joseph, B.49
Jost, P.J.50
Kaufmann, T.51
Kepp, O.52
Klionsky, D.J.53
Knight, R.A.54
Kumar, S.55
Lemasters, J.J.56
Levine, B.57
Linkermann, A.58
Lipton, S.A.59
Lockshin, R.A.60
Lopez-Otin, C.61
Lugli, E.62
Madeo, F.63
Malorni, W.64
Marine, J.C.65
Martin, S.J.66
Martinou, J.C.67
Medema, J.P.68
Meier, P.69
Melino, S.70
Mizushima, N.71
Moll, U.72
Munoz-Pinedo, C.73
Nunez, G.74
Oberst, A.75
Panaretakis, T.76
Penninger, J.M.77
Peter, M.E.78
Piacentini, M.79
Pinton, P.80
Prehn, J.H.81
Puthalakath, H.82
Rabinovich, G.A.83
Ravichandran, K.S.84
Rizzuto, R.85
Rodrigues, C.M.86
Rubinsztein, D.C.87
Rudel, T.88
Shi, Y.89
Simon, H.U.90
Stockwell, B.R.91
Szabadkai, G.92
Tait, S.W.93
Tang, H.L.94
Tavernarakis, N.95
Tsujimoto, Y.96
Vanden Berghe, T.97
Vandenabeele, P.98
Villunger, A.99
more..
-
53
-
-
84922541234
-
Autosis and autophagic cell death: the dark side of autophagy
-
Liu Y., Levine B. Autosis and autophagic cell death: the dark side of autophagy. Cell Death and Differentiation 2014, http://www.ncbi.nlm.nih.gov/pubmed/25257169, 10.1038/cdd.2014.143.
-
(2014)
Cell Death and Differentiation
-
-
Liu, Y.1
Levine, B.2
-
54
-
-
38349043984
-
Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species
-
Chen Y., McMillan-Ward E., Kong J., Israels S.J., Gibson S.B. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. Journal ofCell Science 2007, 120(23):4155-4166. http://www.ncbi.nlm.nih.gov/pubmed/18032788, 10.1242/jcs.011163.
-
(2007)
Journal ofCell Science
, vol.120
, Issue.23
, pp. 4155-4166
-
-
Chen, Y.1
McMillan-Ward, E.2
Kong, J.3
Israels, S.J.4
Gibson, S.B.5
-
55
-
-
84896029354
-
Autophagy inhibition induces podocyte apoptosis by activating the pro-apoptotic pathway of endoplasmic reticulum stress
-
Fang L., Li X., Luo Y., He W., Dai C., Yang J. Autophagy inhibition induces podocyte apoptosis by activating the pro-apoptotic pathway of endoplasmic reticulum stress. ExperimentalCell Research 2014, 322(2):290-301. http://www.ncbi.nlm.nih.gov/pubmed/24424244, 10.1016/j.yexcr.2014.01.001.
-
(2014)
ExperimentalCell Research
, vol.322
, Issue.2
, pp. 290-301
-
-
Fang, L.1
Li, X.2
Luo, Y.3
He, W.4
Dai, C.5
Yang, J.6
-
56
-
-
84912059327
-
Mangiferin attenuate sepsis-induced acute kidney injury via antioxidant and anti-inflammatory effects
-
He L., Peng X., Zhu J., Chen X., Liu H., Tang C., Dong Z., Liu F., Peng Y. Mangiferin attenuate sepsis-induced acute kidney injury via antioxidant and anti-inflammatory effects. AmericanJournal ofNephrology 2014, 40(5):441-450. http://www.ncbi.nlm.nih.gov/pubmed/25427663, 10.1159/000369220.
-
(2014)
AmericanJournal ofNephrology
, vol.40
, Issue.5
, pp. 441-450
-
-
He, L.1
Peng, X.2
Zhu, J.3
Chen, X.4
Liu, H.5
Tang, C.6
Dong, Z.7
Liu, F.8
Peng, Y.9
-
57
-
-
84913611594
-
Sialic acid rescues repurified lipopolysaccharide-induced acute renal failure via inhibiting TLR4/PKC/gp91-mediated endoplasmic reticulum stress, apoptosis, autophagy, and pyroptosis signaling
-
Yang C.C., Yao C.A., Yang J.C., Chien C.T. Sialic acid rescues repurified lipopolysaccharide-induced acute renal failure via inhibiting TLR4/PKC/gp91-mediated endoplasmic reticulum stress, apoptosis, autophagy, and pyroptosis signaling. ToxicologicalScienes 2014, 141(1):155-165. http://www.ncbi.nlm.nih.gov/pubmed/24973090, 10.1093/toxsci/kfu121.
-
(2014)
ToxicologicalScienes
, vol.141
, Issue.1
, pp. 155-165
-
-
Yang, C.C.1
Yao, C.A.2
Yang, J.C.3
Chien, C.T.4
-
59
-
-
84908304878
-
C-type natriuretic peptide ameliorates ischemia/reperfusion-induced acute kidney injury by inhibiting apoptosis and oxidative stress in rats
-
Jin X., Zhang Y., Li X., Zhang J., Xu D. C-type natriuretic peptide ameliorates ischemia/reperfusion-induced acute kidney injury by inhibiting apoptosis and oxidative stress in rats. Life Science 2014, 117(1):40-45. http://www.ncbi.nlm.nih.gov/pubmed/25283078, 10.1016/j.lfs.2014.09.023.
-
(2014)
Life Science
, vol.117
, Issue.1
, pp. 40-45
-
-
Jin, X.1
Zhang, Y.2
Li, X.3
Zhang, J.4
Xu, D.5
-
60
-
-
84911930918
-
Fluoxetine ameliorates imbalance of redox homeostasis and inflammation in an acute kidney injury model
-
Aksu U., Guner I., Yaman O.M., Erman H., Uzun D., Sengezer-Inceli M., Sahin A., Yelmen N., Gelisgen R., Uzun H., Sahin G. Fluoxetine ameliorates imbalance of redox homeostasis and inflammation in an acute kidney injury model. Journal ofPhysiology andBiochemistry 2014, 70(4):925-934. http://www.ncbi.nlm.nih.gov/pubmed/25270428, 10.1007/s13105-014-0361-0.
-
(2014)
Journal ofPhysiology andBiochemistry
, vol.70
, Issue.4
, pp. 925-934
-
-
Aksu, U.1
Guner, I.2
Yaman, O.M.3
Erman, H.4
Uzun, D.5
Sengezer-Inceli, M.6
Sahin, A.7
Yelmen, N.8
Gelisgen, R.9
Uzun, H.10
Sahin, G.11
-
61
-
-
84906489214
-
Protective effect of chemically modified SOD on lipid peroxidation and antioxidant status in diabetic rats
-
Mansuroğlu B., Derman S., Yaba A., Kizilbey K. Protective effect of chemically modified SOD on lipid peroxidation and antioxidant status in diabetic rats. InternationalJournal ofBiologicalMacromolecules 2015, 72:79-87. http://www.ncbi.nlm.nih.gov/pubmed/25124383, 10.1016/j.ijbiomac.2014.07.039.
-
(2015)
InternationalJournal ofBiologicalMacromolecules
, vol.72
, pp. 79-87
-
-
Mansuroğlu, B.1
Derman, S.2
Yaba, A.3
Kizilbey, K.4
-
62
-
-
84907487574
-
Curcumin prevents maleate-induced nephrotoxicity: relation to hemodynamic alterations, oxidative stress, mitochondrial oxygen consumption and activity of respiratory complex I
-
Tapia E., Sánchez-Lozada L.G., García-Niño W.R., García E., Cerecedo A., García-Arroyo F.E., Osorio H., Arellano A., Cristóbal-García M., Loredo M.L., Molina-Jijón E., Hernández-Damián J., Negrette-Guzmán M., Zazueta C., Huerta-Yepez S., Reyes J.L., Madero M., Pedraza-Chaverrí J. Curcumin prevents maleate-induced nephrotoxicity: relation to hemodynamic alterations, oxidative stress, mitochondrial oxygen consumption and activity of respiratory complex I. Free RadicalResearch 2014, 48(11):1342-1354. http://www.ncbi.nlm.nih.gov/pubmed/25119790, 10.3109/10715762.2014.954109.
-
(2014)
Free RadicalResearch
, vol.48
, Issue.11
, pp. 1342-1354
-
-
Tapia, E.1
Sánchez-Lozada, L.G.2
García-Niño, W.R.3
García, E.4
Cerecedo, A.5
García-Arroyo, F.E.6
Osorio, H.7
Arellano, A.8
Cristóbal-García, M.9
Loredo, M.L.10
Molina-Jijón, E.11
Hernández-Damián, J.12
Negrette-Guzmán, M.13
Zazueta, C.14
Huerta-Yepez, S.15
Reyes, J.L.16
Madero, M.17
Pedraza-Chaverrí, J.18
-
63
-
-
84922252826
-
Angiotensin(1-7) attenuates the progression of streptozotocin-induced diabetic renal injury better than angiotensin receptor blockade
-
Zhang K., Meng X., Li D., Yang J., Kong J., Hao P., Guo T., Zhang M., Zhang Y., Zhang C. Angiotensin(1-7) attenuates the progression of streptozotocin-induced diabetic renal injury better than angiotensin receptor blockade. Kidney International 2014, http://www.ncbi.nlm.nih.gov/pubmed/25075768, 10.1038/ki.2014.274.
-
(2014)
Kidney International
-
-
Zhang, K.1
Meng, X.2
Li, D.3
Yang, J.4
Kong, J.5
Hao, P.6
Guo, T.7
Zhang, M.8
Zhang, Y.9
Zhang, C.10
-
64
-
-
84921768757
-
Febuxostat for hyperuricemia in patients with advanced chronic kidney disease
-
Akimoto T., Morishita Y., Ito C., Iimura O., Tsunematsu S., Watanabe Y., Kusano E., Nagata D. Febuxostat for hyperuricemia in patients with advanced chronic kidney disease. Drug Target Insights 2014, 8:39-43. http://www.ncbi.nlm.nih.gov/pubmed/25210423, 10.4137/DTI.S16524.
-
(2014)
Drug Target Insights
, vol.8
, pp. 39-43
-
-
Akimoto, T.1
Morishita, Y.2
Ito, C.3
Iimura, O.4
Tsunematsu, S.5
Watanabe, Y.6
Kusano, E.7
Nagata, D.8
|