-
1
-
-
84859778293
-
mTOR signaling in growth control and disease
-
Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149:274-293. http://dx.doi.org/10.1016/j.cell.2012.03.017.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
2
-
-
0033592983
-
Rapamycin-modulated transcription defines the subset of nutrientsensitive signaling pathways directly controlled by the Tor proteins
-
Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SL. 1999. Rapamycin-modulated transcription defines the subset of nutrientsensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci U S A 96:14866-14870. http://dx.doi.org/10.1073/pnas.96.26.14866.
-
(1999)
Proc Natl Acad Sci U S A
, vol.96
, pp. 14866-14870
-
-
Hardwick, J.S.1
Kuruvilla, F.G.2
Tong, J.K.3
Shamji, A.F.4
Schreiber, S.L.5
-
3
-
-
0036310982
-
The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation
-
Peng T, Golub TR, Sabatini DM. 2002. The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol Cell Biol 22:5575-5584. http://dx.doi.org/10.1128/MCB.22.15.5575-5584.2002.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 5575-5584
-
-
Peng, T.1
Golub, T.R.2
Sabatini, D.M.3
-
4
-
-
79954576972
-
Transcriptional control of cellular metabolism by mTOR signaling
-
Yecies JL, Manning BD. 2011. Transcriptional control of cellular metabolism by mTOR signaling. Cancer Res 71:2815-2820. http://dx.doi.org/10.1158/0008-5472.CAN-10-4158.
-
(2011)
Cancer Res
, vol.71
, pp. 2815-2820
-
-
Yecies, J.L.1
Manning, B.D.2
-
5
-
-
80053083941
-
The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile
-
Wang BT, Ducker GS, Barczak AJ, Barbeau R, Erle DJ, Shokat KM. 2011. The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile. Proc Natl Acad Sci U S A 108:15201-15206. http://dx.doi.org/10.1073/pnas.1103746108.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 15201-15206
-
-
Wang, B.T.1
Ducker, G.S.2
Barczak, A.J.3
Barbeau, R.4
Erle, D.J.5
Shokat, K.M.6
-
6
-
-
37449024702
-
The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. 2008. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11-20. http://dx.doi.org/10.1016/j.cmet.2007.10.002.
-
(2008)
Cell Metab
, vol.7
, pp. 11-20
-
-
DeBerardinis, R.J.1
Lum, J.J.2
Hatzivassiliou, G.3
Thompson, C.B.4
-
7
-
-
84877965001
-
Regulation of mTORC1 and its impact on gene expression at a glance
-
Laplante M, Sabatini DM. 2013. Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci 126:1713-1719. http://dx.doi.org/10.1242/jcs.125773.
-
(2013)
J Cell Sci
, vol.126
, pp. 1713-1719
-
-
Laplante, M.1
Sabatini, D.M.2
-
8
-
-
33750044901
-
Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases
-
Mayer C, Grummt I. 2006. Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25:6384-6391. http://dx.doi.org/10.1038/sj.onc.1209883.
-
(2006)
Oncogene
, vol.25
, pp. 6384-6391
-
-
Mayer, C.1
Grummt, I.2
-
9
-
-
84883779605
-
Coordination of nutrient availability and utilization by MAX- and MLX-centered transcription networks
-
O'Shea JM, Ayer DE. 2013. Coordination of nutrient availability and utilization by MAX- and MLX-centered transcription networks. Cold Spring Harb Perspect Med 3:a014258. http://dx.doi.org/10.1101/cshperspect.a014258.
-
(2013)
Cold Spring Harb Perspect Med
, vol.3
, pp. a014258
-
-
O'Shea, J.M.1
Ayer, D.E.2
-
10
-
-
44349149476
-
Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression
-
Stoltzman CA, Peterson CW, Breen KT, Muoio DM, Billin AN, Ayer DE. 2008. Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc Natl Acad Sci U S A 105:6912-6917. http://dx.doi.org/10.1073/pnas.0712199105.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 6912-6917
-
-
Stoltzman, C.A.1
Peterson, C.W.2
Breen, K.T.3
Muoio, D.M.4
Billin, A.N.5
Ayer, D.E.6
-
11
-
-
77953366814
-
Glucose controls nuclear accumulation, promoter binding, and transcriptional activity of the MondoA-Mlx heterodimer
-
Peterson CW, Stoltzman CA, SighinolfiMP, Han KS, Ayer DE. 2010. Glucose controls nuclear accumulation, promoter binding, and transcriptional activity of the MondoA-Mlx heterodimer. Mol Cell Biol 30:2887-2895. http://dx.doi.org/10.1128/MCB.01613-09.
-
(2010)
Mol Cell Biol
, vol.30
, pp. 2887-2895
-
-
Peterson, C.W.1
Stoltzman, C.A.2
Sighinolfi, M.P.3
Han, K.S.4
Ayer, D.E.5
-
12
-
-
0034462487
-
MondoA, a novel basic helix-loop-helix-leucine zipper transcriptional activator that constitutes a positive branch of a max-like network
-
Billin AN, Eilers AL, Coulter KL, Logan JS, Ayer DE. 2000. MondoA, a novel basic helix-loop-helix-leucine zipper transcriptional activator that constitutes a positive branch of a max-like network. Mol Cell Biol 20:8845-8854. http://dx.doi.org/10.1128/MCB.20.23.8845-8854.2000.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 8845-8854
-
-
Billin, A.N.1
Eilers, A.L.2
Coulter, K.L.3
Logan, J.S.4
Ayer, D.E.5
-
13
-
-
0036893516
-
A novel heterodimerization domain, CRM1, and 14-3-3 control subcellular localization of the MondoA-Mlx heterocomplex
-
Eilers AL, Sundwall E, Lin M, Sullivan AA, Ayer DE. 2002. A novel heterodimerization domain, CRM1, and 14-3-3 control subcellular localization of the MondoA-Mlx heterocomplex. Mol Cell Biol 22:8514-8526. http://dx.doi.org/10.1128/MCB.22.24.8514-8526.2002.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 8514-8526
-
-
Eilers, A.L.1
Sundwall, E.2
Lin, M.3
Sullivan, A.A.4
Ayer, D.E.5
-
14
-
-
70349290632
-
Glutaminedependent anaplerosis dictates glucose uptake and cell growth by regulating MondoA transcriptional activity
-
Kaadige MR, Looper RE, Kamalanaadhan S, Ayer DE. 2009. Glutaminedependent anaplerosis dictates glucose uptake and cell growth by regulating MondoA transcriptional activity. Proc Natl Acad SciUSA106:14878-14883. http://dx.doi.org/10.1073/pnas.0901221106.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 14878-14883
-
-
Kaadige, M.R.1
Looper, R.E.2
Kamalanaadhan, S.3
Ayer, D.E.4
-
15
-
-
78049415422
-
Lactic acidosis triggers starvation response with paradoxical induction of TXNIP through MondoA
-
Chen JL, Merl D, Peterson CW, Wu J, Liu PY, Yin H, Muoio DM, Ayer DE, West M, Chi JT. 2010. Lactic acidosis triggers starvation response with paradoxical induction of TXNIP through MondoA. PLoS Genet 6:e1001093. http://dx.doi.org/10.1371/journal.pgen.1001093.
-
(2010)
PLoS Genet
, vol.6
, pp. e1001093
-
-
Chen, J.L.1
Merl, D.2
Peterson, C.W.3
Wu, J.4
Liu, P.Y.5
Yin, H.6
Muoio, D.M.7
Ayer, D.E.8
West, M.9
Chi, J.T.10
-
16
-
-
79952830170
-
Transcriptional and translational downregulation of thioredoxin interacting protein is required for metabolic reprogramming duringG1
-
Elgort MG, O'Shea JM, Jiang Y, Ayer DE. 2010. Transcriptional and translational downregulation of thioredoxin interacting protein is required for metabolic reprogramming duringG1. Genes Cancer 1:893-907. http://dx.doi.org/10.1177/1947601910389604.
-
(2010)
Genes Cancer
, vol.1
, pp. 893-907
-
-
Elgort, M.G.1
O'Shea, J.M.2
Jiang, Y.3
Ayer, D.E.4
-
17
-
-
33745458797
-
MondoA-Mlx heterodimers are candidate sensors of cellular energy status: mitochondrial localization and direct regulation of glycolysis
-
Sans CL, Satterwhite DJ, Stoltzman CA, Breen KT, Ayer DE. 2006. MondoA-Mlx heterodimers are candidate sensors of cellular energy status: mitochondrial localization and direct regulation of glycolysis. Mol Cell Biol 26:4863-4871. http://dx.doi.org/10.1128/MCB.00657-05.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 4863-4871
-
-
Sans, C.L.1
Satterwhite, D.J.2
Stoltzman, C.A.3
Breen, K.T.4
Ayer, D.E.5
-
18
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
-
Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS. 2009. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284:8023-8032. http://dx.doi.org/10.1074/jbc. M900301200.
-
(2009)
J Biol Chem
, vol.284
, pp. 8023-8032
-
-
Thoreen, C.C.1
Kang, S.A.2
Chang, J.W.3
Liu, Q.4
Zhang, J.5
Gao, Y.6
Reichling, L.J.7
Sim, T.8
Sabatini, D.M.9
Gray, N.S.10
-
19
-
-
0032811354
-
Poly(ethylenimine) and its role in gene delivery
-
Godbey WT, Wu KK, Mikos AG. 1999. Poly(ethylenimine) and its role in gene delivery. J Control Release 60:149-160. http://dx.doi.org/10.1016/S0168-3659(99)00090-5.
-
(1999)
J Control Release
, vol.60
, pp. 149-160
-
-
Godbey, W.T.1
Wu, K.K.2
Mikos, A.G.3
-
20
-
-
58149136865
-
Roles of p53, MYC and HIF-1 in regulating glycolysis-the seventh hallmark of cancer
-
Yeung SJ, Pan J, Lee MH. 2008. Roles of p53, MYC and HIF-1 in regulating glycolysis-the seventh hallmark of cancer. Cell Mol Life Sci 65:3981-3999. http://dx.doi.org/10.1007/s00018-008-8224-x.
-
(2008)
Cell Mol Life Sci
, vol.65
, pp. 3981-3999
-
-
Yeung, S.J.1
Pan, J.2
Lee, M.H.3
-
21
-
-
59049087460
-
Bidirectional transport of amino acids regulates mTOR and autophagy
-
Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO. 2009. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521-534. http://dx.doi.org/10.1016/j.cell.2008.11.044.
-
(2009)
Cell
, vol.136
, pp. 521-534
-
-
Nicklin, P.1
Bergman, P.2
Zhang, B.3
Triantafellow, E.4
Wang, H.5
Nyfeler, B.6
Yang, H.7
Hild, M.8
Kung, C.9
Wilson, C.10
Myer, V.E.11
MacKeigan, J.P.12
Porter, J.A.13
Wang, Y.K.14
Cantley, L.C.15
Finan, P.M.16
Murphy, L.O.17
-
22
-
-
33747690458
-
Activation of mammalian target of rapamycin (mTOR) by insulin is associated with stimulation of 4EBP1 binding to dimeric mTOR complex 1
-
Wang L, Rhodes CJ, Lawrence JC, Jr. 2006. Activation of mammalian target of rapamycin (mTOR) by insulin is associated with stimulation of 4EBP1 binding to dimeric mTOR complex 1. J Biol Chem 281:24293-24303. http://dx.doi.org/10.1074/jbc. M603566200.
-
(2006)
J Biol Chem
, vol.281
, pp. 24293-24303
-
-
Wang, L.1
Rhodes, C.J.2
Lawrence Jr., J.C.3
-
23
-
-
33749406921
-
Nutrient-dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region
-
Takahara T, Hara K, Yonezawa K, Sorimachi H, Maeda T. 2006. Nutrient-dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region. J Biol Chem 281:28605-28614. http://dx.doi.org/10.1074/jbc. M606087200.
-
(2006)
J Biol Chem
, vol.281
, pp. 28605-28614
-
-
Takahara, T.1
Hara, K.2
Yonezawa, K.3
Sorimachi, H.4
Maeda, T.5
-
24
-
-
84890149646
-
Where is mTOR and what is it doing there?
-
Betz C, Hall MN. 2013. Where is mTOR and what is it doing there? J Cell Biol 203:563-574. http://dx.doi.org/10.1083/jcb.201306041.
-
(2013)
J Cell Biol
, vol.203
, pp. 563-574
-
-
Betz, C.1
Hall, M.N.2
-
25
-
-
0037178786
-
mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument- Bromage H, Tempst P, Sabatini DM. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163-175. http://dx.doi.org/10.1016/S0092-8674(02)00808-5.
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
King, J.E.4
Latek, R.R.5
Erdjument-Bromage, H.6
Tempst, P.7
Sabatini, D.M.8
-
26
-
-
77950900079
-
mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action
-
Soliman GA, Acosta-Jaquez HA, Dunlop EA, Ekim B, Maj NE, Tee AR, Fingar DC. 2010. mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. J Biol Chem 285:7866-7879. http://dx.doi.org/10.1074/jbc. M109.096222.
-
(2010)
J Biol Chem
, vol.285
, pp. 7866-7879
-
-
Soliman, G.A.1
Acosta-Jaquez, H.A.2
Dunlop, E.A.3
Ekim, B.4
Maj, N.E.5
Tee, A.R.6
Fingar, D.C.7
-
27
-
-
33750044112
-
Stress and mTORture signaling
-
Reiling JH, Sabatini DM. 2006. Stress and mTORture signaling. Oncogene 25:6373-6383. http://dx.doi.org/10.1038/sj.onc.1209889.
-
(2006)
Oncogene
, vol.25
, pp. 6373-6383
-
-
Reiling, J.H.1
Sabatini, D.M.2
-
28
-
-
77954564757
-
Multi-mechanisms are involved in reactive oxygen species regulation of mTORC1 signaling
-
Li M, Zhao L, Liu J, Liu A, Jia C, Ma D, Jiang Y, Bai X. 2010. Multi-mechanisms are involved in reactive oxygen species regulation of mTORC1 signaling. Cell Signal 22:1469-1476. http://dx.doi.org/10.1016/j.cellsig.2010.05.015.
-
(2010)
Cell Signal
, vol.22
, pp. 1469-1476
-
-
Li, M.1
Zhao, L.2
Liu, J.3
Liu, A.4
Jia, C.5
Ma, D.6
Jiang, Y.7
Bai, X.8
-
29
-
-
84885105969
-
A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1and autophagy in response to ROS
-
Zhang J, Kim J, Alexander A, Cai S, Tripathi DN, Dere R, Tee AR, Tait-Mulder J, Di Nardo A, Han JM, Kwiatkowski E, Dunlop EA, Dodd KM, Folkerth RD, Faust PL, Kastan MB, Sahin M, Walker CL. 2013. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1and autophagy in response to ROS. Nat Cell Biol 15:1186-1196. http://dx.doi.org/10.1038/ncb2822.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 1186-1196
-
-
Zhang, J.1
Kim, J.2
Alexander, A.3
Cai, S.4
Tripathi, D.N.5
Dere, R.6
Tee, A.R.7
Tait-Mulder, J.8
Di Nardo, A.9
Han, J.M.10
Kwiatkowski, E.11
Dunlop, E.A.12
Dodd, K.M.13
Folkerth, R.D.14
Faust, P.L.15
Kastan, M.B.16
Sahin, M.17
Walker, C.L.18
-
30
-
-
28244469041
-
Redox regulation of the nutrientsensitive raptor-mTOR pathway and complex
-
Sarbassov DD, Sabatini DM. 2005. Redox regulation of the nutrientsensitive raptor-mTOR pathway and complex. J Biol Chem 280:39505-39509. http://dx.doi.org/10.1074/jbc. M506096200.
-
(2005)
J Biol Chem
, vol.280
, pp. 39505-39509
-
-
Sarbassov, D.D.1
Sabatini, D.M.2
-
31
-
-
80052736325
-
Redox regulates mammalian target of rapamycin complex 1 (mTORC1) activity by modulating the TSC1/TSC2-Rheb GTPase pathway
-
Yoshida S, Hong S, Suzuki T, Nada S, Mannan AM, Wang J, Okada M, Guan KL, Inoki K. 2011. Redox regulates mammalian target of rapamycin complex 1 (mTORC1) activity by modulating the TSC1/TSC2-Rheb GTPase pathway. J Biol Chem 286:32651-32660. http://dx.doi.org/10.1074/jbc. M111.238014.
-
(2011)
J Biol Chem
, vol.286
, pp. 32651-32660
-
-
Yoshida, S.1
Hong, S.2
Suzuki, T.3
Nada, S.4
Mannan, A.M.5
Wang, J.6
Okada, M.7
Guan, K.L.8
Inoki, K.9
-
32
-
-
43049173731
-
Reactive oxygen species generated by thiol-modifying phenylarsine oxide stimulate the expression of protein L-isoaspartyl methyltransferase
-
Fanelus I, Desrosiers RR. 2008. Reactive oxygen species generated by thiol-modifying phenylarsine oxide stimulate the expression of protein L-isoaspartyl methyltransferase. Biochem Biophys Res Commun 371:203-208. http://dx.doi.org/10.1016/j.bbrc.2008.04.009.
-
(2008)
Biochem Biophys Res Commun
, vol.371
, pp. 203-208
-
-
Fanelus, I.1
Desrosiers, R.R.2
-
33
-
-
34247576377
-
Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: a review
-
Flora SJ, Bhadauria S, Kannan GM, Singh N. 2007. Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: a review. J Environ Biol 28:333-347.
-
(2007)
J Environ Biol
, vol.28
, pp. 333-347
-
-
Flora, S.J.1
Bhadauria, S.2
Kannan, G.M.3
Singh, N.4
-
34
-
-
80052298175
-
TXNIP potentiates Redd1-induced mTOR suppression through stabilization of Redd1
-
Jin HO, Seo SK, Kim YS, Woo SH, Lee KH, Yi JY, Lee SJ, Choe TB, Lee JH, An S, Hong SI, Park IC. 2011. TXNIP potentiates Redd1-induced mTOR suppression through stabilization of Redd1. Oncogene 30:3792-3801. http://dx.doi.org/10.1038/onc.2011.102.
-
(2011)
Oncogene
, vol.30
, pp. 3792-3801
-
-
Jin, H.O.1
Seo, S.K.2
Kim, Y.S.3
Woo, S.H.4
Lee, K.H.5
Yi, J.Y.6
Lee, S.J.7
Choe, T.B.8
Lee, J.H.9
An, S.10
Hong, S.I.11
Park, I.C.12
-
35
-
-
78649348967
-
Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
-
Sengupta S, Peterson TR, Sabatini DM. 2010. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40:310-322. http://dx.doi.org/10.1016/j.molcel.2010.09.026.
-
(2010)
Mol Cell
, vol.40
, pp. 310-322
-
-
Sengupta, S.1
Peterson, T.R.2
Sabatini, D.M.3
-
36
-
-
79952259446
-
Coordination of glucose and glutamine utilization by an expanded Myc network
-
Kaadige MR, Elgort MG, Ayer DE. 2010. Coordination of glucose and glutamine utilization by an expanded Myc network. Transcription 1:36-40. http://dx.doi.org/10.4161/trns.1.1.12142.
-
(2010)
Transcription
, vol.1
, pp. 36-40
-
-
Kaadige, M.R.1
Elgort, M.G.2
Ayer, D.E.3
-
37
-
-
84879478070
-
TXNIP shuttling: missing link between oxidative stress and inflammasome activation
-
Lane T, Flam B, Lockey R, Kolliputi N. 2013. TXNIP shuttling: missing link between oxidative stress and inflammasome activation. Front Physiol 4:50. http://dx.doi.org/10.3389/fphys.2013.00050.
-
(2013)
Front Physiol
, vol.4
, pp. 50
-
-
Lane, T.1
Flam, B.2
Lockey, R.3
Kolliputi, N.4
-
38
-
-
80255134542
-
TXNIP (VDUP-1, TBP-2): a major redox regulator commonly suppressed in cancer by epigenetic mechanisms
-
Zhou J, Yu Q, Chng WJ. 2011. TXNIP (VDUP-1, TBP-2): a major redox regulator commonly suppressed in cancer by epigenetic mechanisms. Int J Biochem Cell Biol 43:1668-1673. http://dx.doi.org/10.1016/j.biocel.2011.09.005.
-
(2011)
Int J Biochem Cell Biol
, vol.43
, pp. 1668-1673
-
-
Zhou, J.1
Yu, Q.2
Chng, W.J.3
-
39
-
-
84874918845
-
Thioredoxin-interacting protein mediates high glucose-induced reactive oxygen species generation by mitochondria and the NADPH oxidase, Nox4, in mesangial cells
-
Shah A, Xia L, Goldberg H, Lee KW, Quaggin SE, Fantus IG. 2013. Thioredoxin-interacting protein mediates high glucose-induced reactive oxygen species generation by mitochondria and the NADPH oxidase, Nox4, in mesangial cells. J Biol Chem 288:6835-6848. http://dx.doi.org/10.1074/jbc. M112.419101.
-
(2013)
J Biol Chem
, vol.288
, pp. 6835-6848
-
-
Shah, A.1
Xia, L.2
Goldberg, H.3
Lee, K.W.4
Quaggin, S.E.5
Fantus, I.G.6
-
40
-
-
84867777934
-
Redox regulation by nuclear factor erythroid 2-related factor 2: gatekeeping for the basal and diabetes-induced expression of thioredoxin-interacting protein
-
He X, Ma Q. 2012. Redox regulation by nuclear factor erythroid 2-related factor 2: gatekeeping for the basal and diabetes-induced expression of thioredoxin-interacting protein. Mol Pharmacol 82:887-897. http://dx.doi.org/10.1124/mol.112.081133.
-
(2012)
Mol Pharmacol
, vol.82
, pp. 887-897
-
-
He, X.1
Ma, Q.2
-
41
-
-
84893186874
-
Nitrosative/oxidative stress conditions regulate thioredoxin-interacting protein (TXNIP) expression and thioredoxin-1 (TRX-1) nuclear localization
-
Ogata FT, Batista WL, Sartori A, Gesteira TF, Masutani H, Arai RJ, Yodoi J, Stern A, Monteiro HP. 2013. Nitrosative/oxidative stress conditions regulate thioredoxin-interacting protein (TXNIP) expression and thioredoxin-1 (TRX-1) nuclear localization. PLoS One 8:e84588. http://dx.doi.org/10.1371/journal.pone.0084588.
-
(2013)
PLoS One
, vol.8
-
-
Ogata, F.T.1
Batista, W.L.2
Sartori, A.3
Gesteira, T.F.4
Masutani, H.5
Arai, R.J.6
Yodoi, J.7
Stern, A.8
Monteiro, H.P.9
-
42
-
-
79958696336
-
Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
-
Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J, Kubica N, Hoffman GR, Cantley LC, Gygi SP, Blenis J. 2011. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332:1322-1326. http://dx.doi.org/10.1126/science.1199484.
-
(2011)
Science
, vol.332
, pp. 1322-1326
-
-
Yu, Y.1
Yoon, S.O.2
Poulogiannis, G.3
Yang, Q.4
Ma, X.M.5
Villen, J.6
Kubica, N.7
Hoffman, G.R.8
Cantley, L.C.9
Gygi, S.P.10
Blenis, J.11
-
43
-
-
80055071869
-
MondoA senses non-glucose sugars: regulation of thioredoxin-interacting protein (TXNIP) and the hexose transport curb
-
Stoltzman CA, Kaadige MR, Peterson CW, Ayer DE. 2011. MondoA senses non-glucose sugars: regulation of thioredoxin-interacting protein (TXNIP) and the hexose transport curb. J Biol Chem 286:38027-38034. http://dx.doi.org/10.1074/jbc. M111.275503.
-
(2011)
J Biol Chem
, vol.286
, pp. 38027-38034
-
-
Stoltzman, C.A.1
Kaadige, M.R.2
Peterson, C.W.3
Ayer, D.E.4
-
44
-
-
84905270049
-
Minireview: thioredoxin-interacting protein: regulation and function in the pancreatic beta-cell
-
Shalev A. 2014. Minireview: thioredoxin-interacting protein: regulation and function in the pancreatic beta-cell. Mol Endocrinol 28:1211-1220. http://dx.doi.org/10.1210/me.2014-1095.
-
(2014)
Mol Endocrinol
, vol.28
, pp. 1211-1220
-
-
Shalev, A.1
-
45
-
-
84887038087
-
The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment
-
Versari S, Longinotti G, Barenghi L, Maier JA, Bradamante S. 2013. The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment. FASEB J 27:4466-4475. http://dx.doi.org/10.1096/fj.13-229195.
-
(2013)
FASEB J
, vol.27
, pp. 4466-4475
-
-
Versari, S.1
Longinotti, G.2
Barenghi, L.3
Maier, J.A.4
Bradamante, S.5
-
46
-
-
84894105147
-
Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition
-
Roberts DJ, Tan-Sah VP, Ding EY, Smith JM, Miyamoto S. 2014. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol Cell 53:521-533. http://dx.doi.org/10.1016/j.molcel.2013.12.019.
-
(2014)
Mol Cell
, vol.53
, pp. 521-533
-
-
Roberts, D.J.1
Tan-Sah, V.P.2
Ding, E.Y.3
Smith, J.M.4
Miyamoto, S.5
-
47
-
-
53049106773
-
Glucose activates ChREBP by increasing its rate of nuclear entry and relieving repression of its transcriptional activity
-
Davies MN, O'Callaghan BL, Towle HC. 2008. Glucose activates ChREBP by increasing its rate of nuclear entry and relieving repression of its transcriptional activity. J Biol Chem 283:24029-24038. http://dx.doi.org/10.1074/jbc. M801539200.
-
(2008)
J Biol Chem
, vol.283
, pp. 24029-24038
-
-
Davies, M.N.1
O'Callaghan, B.L.2
Towle, H.C.3
-
48
-
-
84865196738
-
Glucose sensing by ChREBP/MondoAMlx transcription factors
-
Havula E, Hietakangas V. 2012. Glucose sensing by ChREBP/MondoAMlx transcription factors. Semin Cell Dev Biol 23:640-647. http://dx.doi.org/10.1016/j.semcdb.2012.02.007.
-
(2012)
Semin Cell Dev Biol
, vol.23
, pp. 640-647
-
-
Havula, E.1
Hietakangas, V.2
-
49
-
-
67749111502
-
The LKB1-AMPK pathway: metabolism and growth control in tumour suppression
-
Shackelford DB, Shaw RJ. 2009. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9:563-575. http://dx.doi.org/10.1038/nrc2676.
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 563-575
-
-
Shackelford, D.B.1
Shaw, R.J.2
|