메뉴 건너뛰기




Volumn 35, Issue 1, 2015, Pages 101-110

MondoA-Mlx transcriptional activity is limited by mTOR-MondoA interaction

Author keywords

[No Author keywords available]

Indexed keywords

BASIC HELIX LOOP HELIX LEUCINE ZIPPER TRANSCRIPTION FACTOR; MAMMALIAN TARGET OF RAPAMYCIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MAMMALIAN TARGET OF RAPAMYCIN INHIBITOR; MLX PROTEIN; MONDOA PROTEIN; REACTIVE OXYGEN METABOLITE; THIOREDOXIN INTERACTING PROTEIN; UNCLASSIFIED DRUG; CARRIER PROTEIN; GLUCOSE; MONDOA PROTEIN, HUMAN; MONDOA PROTEIN, MOUSE; MTOR PROTEIN, HUMAN; MTOR PROTEIN, MOUSE; TARGET OF RAPAMYCIN KINASE; THIOREDOXIN; TXNIP PROTEIN, HUMAN; TXNIP PROTEIN, MOUSE;

EID: 84920020572     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.00636-14     Document Type: Article
Times cited : (30)

References (49)
  • 1
    • 84859778293 scopus 로고    scopus 로고
    • mTOR signaling in growth control and disease
    • Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149:274-293. http://dx.doi.org/10.1016/j.cell.2012.03.017.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 2
    • 0033592983 scopus 로고    scopus 로고
    • Rapamycin-modulated transcription defines the subset of nutrientsensitive signaling pathways directly controlled by the Tor proteins
    • Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SL. 1999. Rapamycin-modulated transcription defines the subset of nutrientsensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci U S A 96:14866-14870. http://dx.doi.org/10.1073/pnas.96.26.14866.
    • (1999) Proc Natl Acad Sci U S A , vol.96 , pp. 14866-14870
    • Hardwick, J.S.1    Kuruvilla, F.G.2    Tong, J.K.3    Shamji, A.F.4    Schreiber, S.L.5
  • 3
    • 0036310982 scopus 로고    scopus 로고
    • The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation
    • Peng T, Golub TR, Sabatini DM. 2002. The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol Cell Biol 22:5575-5584. http://dx.doi.org/10.1128/MCB.22.15.5575-5584.2002.
    • (2002) Mol Cell Biol , vol.22 , pp. 5575-5584
    • Peng, T.1    Golub, T.R.2    Sabatini, D.M.3
  • 4
    • 79954576972 scopus 로고    scopus 로고
    • Transcriptional control of cellular metabolism by mTOR signaling
    • Yecies JL, Manning BD. 2011. Transcriptional control of cellular metabolism by mTOR signaling. Cancer Res 71:2815-2820. http://dx.doi.org/10.1158/0008-5472.CAN-10-4158.
    • (2011) Cancer Res , vol.71 , pp. 2815-2820
    • Yecies, J.L.1    Manning, B.D.2
  • 5
    • 80053083941 scopus 로고    scopus 로고
    • The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile
    • Wang BT, Ducker GS, Barczak AJ, Barbeau R, Erle DJ, Shokat KM. 2011. The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile. Proc Natl Acad Sci U S A 108:15201-15206. http://dx.doi.org/10.1073/pnas.1103746108.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 15201-15206
    • Wang, B.T.1    Ducker, G.S.2    Barczak, A.J.3    Barbeau, R.4    Erle, D.J.5    Shokat, K.M.6
  • 6
    • 37449024702 scopus 로고    scopus 로고
    • The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
    • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. 2008. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11-20. http://dx.doi.org/10.1016/j.cmet.2007.10.002.
    • (2008) Cell Metab , vol.7 , pp. 11-20
    • DeBerardinis, R.J.1    Lum, J.J.2    Hatzivassiliou, G.3    Thompson, C.B.4
  • 7
    • 84877965001 scopus 로고    scopus 로고
    • Regulation of mTORC1 and its impact on gene expression at a glance
    • Laplante M, Sabatini DM. 2013. Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci 126:1713-1719. http://dx.doi.org/10.1242/jcs.125773.
    • (2013) J Cell Sci , vol.126 , pp. 1713-1719
    • Laplante, M.1    Sabatini, D.M.2
  • 8
    • 33750044901 scopus 로고    scopus 로고
    • Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases
    • Mayer C, Grummt I. 2006. Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25:6384-6391. http://dx.doi.org/10.1038/sj.onc.1209883.
    • (2006) Oncogene , vol.25 , pp. 6384-6391
    • Mayer, C.1    Grummt, I.2
  • 9
    • 84883779605 scopus 로고    scopus 로고
    • Coordination of nutrient availability and utilization by MAX- and MLX-centered transcription networks
    • O'Shea JM, Ayer DE. 2013. Coordination of nutrient availability and utilization by MAX- and MLX-centered transcription networks. Cold Spring Harb Perspect Med 3:a014258. http://dx.doi.org/10.1101/cshperspect.a014258.
    • (2013) Cold Spring Harb Perspect Med , vol.3 , pp. a014258
    • O'Shea, J.M.1    Ayer, D.E.2
  • 10
    • 44349149476 scopus 로고    scopus 로고
    • Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression
    • Stoltzman CA, Peterson CW, Breen KT, Muoio DM, Billin AN, Ayer DE. 2008. Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc Natl Acad Sci U S A 105:6912-6917. http://dx.doi.org/10.1073/pnas.0712199105.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 6912-6917
    • Stoltzman, C.A.1    Peterson, C.W.2    Breen, K.T.3    Muoio, D.M.4    Billin, A.N.5    Ayer, D.E.6
  • 11
    • 77953366814 scopus 로고    scopus 로고
    • Glucose controls nuclear accumulation, promoter binding, and transcriptional activity of the MondoA-Mlx heterodimer
    • Peterson CW, Stoltzman CA, SighinolfiMP, Han KS, Ayer DE. 2010. Glucose controls nuclear accumulation, promoter binding, and transcriptional activity of the MondoA-Mlx heterodimer. Mol Cell Biol 30:2887-2895. http://dx.doi.org/10.1128/MCB.01613-09.
    • (2010) Mol Cell Biol , vol.30 , pp. 2887-2895
    • Peterson, C.W.1    Stoltzman, C.A.2    Sighinolfi, M.P.3    Han, K.S.4    Ayer, D.E.5
  • 12
    • 0034462487 scopus 로고    scopus 로고
    • MondoA, a novel basic helix-loop-helix-leucine zipper transcriptional activator that constitutes a positive branch of a max-like network
    • Billin AN, Eilers AL, Coulter KL, Logan JS, Ayer DE. 2000. MondoA, a novel basic helix-loop-helix-leucine zipper transcriptional activator that constitutes a positive branch of a max-like network. Mol Cell Biol 20:8845-8854. http://dx.doi.org/10.1128/MCB.20.23.8845-8854.2000.
    • (2000) Mol Cell Biol , vol.20 , pp. 8845-8854
    • Billin, A.N.1    Eilers, A.L.2    Coulter, K.L.3    Logan, J.S.4    Ayer, D.E.5
  • 13
    • 0036893516 scopus 로고    scopus 로고
    • A novel heterodimerization domain, CRM1, and 14-3-3 control subcellular localization of the MondoA-Mlx heterocomplex
    • Eilers AL, Sundwall E, Lin M, Sullivan AA, Ayer DE. 2002. A novel heterodimerization domain, CRM1, and 14-3-3 control subcellular localization of the MondoA-Mlx heterocomplex. Mol Cell Biol 22:8514-8526. http://dx.doi.org/10.1128/MCB.22.24.8514-8526.2002.
    • (2002) Mol Cell Biol , vol.22 , pp. 8514-8526
    • Eilers, A.L.1    Sundwall, E.2    Lin, M.3    Sullivan, A.A.4    Ayer, D.E.5
  • 14
    • 70349290632 scopus 로고    scopus 로고
    • Glutaminedependent anaplerosis dictates glucose uptake and cell growth by regulating MondoA transcriptional activity
    • Kaadige MR, Looper RE, Kamalanaadhan S, Ayer DE. 2009. Glutaminedependent anaplerosis dictates glucose uptake and cell growth by regulating MondoA transcriptional activity. Proc Natl Acad SciUSA106:14878-14883. http://dx.doi.org/10.1073/pnas.0901221106.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 14878-14883
    • Kaadige, M.R.1    Looper, R.E.2    Kamalanaadhan, S.3    Ayer, D.E.4
  • 15
  • 16
    • 79952830170 scopus 로고    scopus 로고
    • Transcriptional and translational downregulation of thioredoxin interacting protein is required for metabolic reprogramming duringG1
    • Elgort MG, O'Shea JM, Jiang Y, Ayer DE. 2010. Transcriptional and translational downregulation of thioredoxin interacting protein is required for metabolic reprogramming duringG1. Genes Cancer 1:893-907. http://dx.doi.org/10.1177/1947601910389604.
    • (2010) Genes Cancer , vol.1 , pp. 893-907
    • Elgort, M.G.1    O'Shea, J.M.2    Jiang, Y.3    Ayer, D.E.4
  • 17
    • 33745458797 scopus 로고    scopus 로고
    • MondoA-Mlx heterodimers are candidate sensors of cellular energy status: mitochondrial localization and direct regulation of glycolysis
    • Sans CL, Satterwhite DJ, Stoltzman CA, Breen KT, Ayer DE. 2006. MondoA-Mlx heterodimers are candidate sensors of cellular energy status: mitochondrial localization and direct regulation of glycolysis. Mol Cell Biol 26:4863-4871. http://dx.doi.org/10.1128/MCB.00657-05.
    • (2006) Mol Cell Biol , vol.26 , pp. 4863-4871
    • Sans, C.L.1    Satterwhite, D.J.2    Stoltzman, C.A.3    Breen, K.T.4    Ayer, D.E.5
  • 19
    • 0032811354 scopus 로고    scopus 로고
    • Poly(ethylenimine) and its role in gene delivery
    • Godbey WT, Wu KK, Mikos AG. 1999. Poly(ethylenimine) and its role in gene delivery. J Control Release 60:149-160. http://dx.doi.org/10.1016/S0168-3659(99)00090-5.
    • (1999) J Control Release , vol.60 , pp. 149-160
    • Godbey, W.T.1    Wu, K.K.2    Mikos, A.G.3
  • 20
    • 58149136865 scopus 로고    scopus 로고
    • Roles of p53, MYC and HIF-1 in regulating glycolysis-the seventh hallmark of cancer
    • Yeung SJ, Pan J, Lee MH. 2008. Roles of p53, MYC and HIF-1 in regulating glycolysis-the seventh hallmark of cancer. Cell Mol Life Sci 65:3981-3999. http://dx.doi.org/10.1007/s00018-008-8224-x.
    • (2008) Cell Mol Life Sci , vol.65 , pp. 3981-3999
    • Yeung, S.J.1    Pan, J.2    Lee, M.H.3
  • 22
    • 33747690458 scopus 로고    scopus 로고
    • Activation of mammalian target of rapamycin (mTOR) by insulin is associated with stimulation of 4EBP1 binding to dimeric mTOR complex 1
    • Wang L, Rhodes CJ, Lawrence JC, Jr. 2006. Activation of mammalian target of rapamycin (mTOR) by insulin is associated with stimulation of 4EBP1 binding to dimeric mTOR complex 1. J Biol Chem 281:24293-24303. http://dx.doi.org/10.1074/jbc. M603566200.
    • (2006) J Biol Chem , vol.281 , pp. 24293-24303
    • Wang, L.1    Rhodes, C.J.2    Lawrence Jr., J.C.3
  • 23
    • 33749406921 scopus 로고    scopus 로고
    • Nutrient-dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region
    • Takahara T, Hara K, Yonezawa K, Sorimachi H, Maeda T. 2006. Nutrient-dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region. J Biol Chem 281:28605-28614. http://dx.doi.org/10.1074/jbc. M606087200.
    • (2006) J Biol Chem , vol.281 , pp. 28605-28614
    • Takahara, T.1    Hara, K.2    Yonezawa, K.3    Sorimachi, H.4    Maeda, T.5
  • 24
    • 84890149646 scopus 로고    scopus 로고
    • Where is mTOR and what is it doing there?
    • Betz C, Hall MN. 2013. Where is mTOR and what is it doing there? J Cell Biol 203:563-574. http://dx.doi.org/10.1083/jcb.201306041.
    • (2013) J Cell Biol , vol.203 , pp. 563-574
    • Betz, C.1    Hall, M.N.2
  • 25
    • 0037178786 scopus 로고    scopus 로고
    • mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument- Bromage H, Tempst P, Sabatini DM. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163-175. http://dx.doi.org/10.1016/S0092-8674(02)00808-5.
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.H.1    Sarbassov, D.D.2    Ali, S.M.3    King, J.E.4    Latek, R.R.5    Erdjument-Bromage, H.6    Tempst, P.7    Sabatini, D.M.8
  • 26
    • 77950900079 scopus 로고    scopus 로고
    • mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action
    • Soliman GA, Acosta-Jaquez HA, Dunlop EA, Ekim B, Maj NE, Tee AR, Fingar DC. 2010. mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. J Biol Chem 285:7866-7879. http://dx.doi.org/10.1074/jbc. M109.096222.
    • (2010) J Biol Chem , vol.285 , pp. 7866-7879
    • Soliman, G.A.1    Acosta-Jaquez, H.A.2    Dunlop, E.A.3    Ekim, B.4    Maj, N.E.5    Tee, A.R.6    Fingar, D.C.7
  • 27
    • 33750044112 scopus 로고    scopus 로고
    • Stress and mTORture signaling
    • Reiling JH, Sabatini DM. 2006. Stress and mTORture signaling. Oncogene 25:6373-6383. http://dx.doi.org/10.1038/sj.onc.1209889.
    • (2006) Oncogene , vol.25 , pp. 6373-6383
    • Reiling, J.H.1    Sabatini, D.M.2
  • 28
    • 77954564757 scopus 로고    scopus 로고
    • Multi-mechanisms are involved in reactive oxygen species regulation of mTORC1 signaling
    • Li M, Zhao L, Liu J, Liu A, Jia C, Ma D, Jiang Y, Bai X. 2010. Multi-mechanisms are involved in reactive oxygen species regulation of mTORC1 signaling. Cell Signal 22:1469-1476. http://dx.doi.org/10.1016/j.cellsig.2010.05.015.
    • (2010) Cell Signal , vol.22 , pp. 1469-1476
    • Li, M.1    Zhao, L.2    Liu, J.3    Liu, A.4    Jia, C.5    Ma, D.6    Jiang, Y.7    Bai, X.8
  • 30
    • 28244469041 scopus 로고    scopus 로고
    • Redox regulation of the nutrientsensitive raptor-mTOR pathway and complex
    • Sarbassov DD, Sabatini DM. 2005. Redox regulation of the nutrientsensitive raptor-mTOR pathway and complex. J Biol Chem 280:39505-39509. http://dx.doi.org/10.1074/jbc. M506096200.
    • (2005) J Biol Chem , vol.280 , pp. 39505-39509
    • Sarbassov, D.D.1    Sabatini, D.M.2
  • 31
    • 80052736325 scopus 로고    scopus 로고
    • Redox regulates mammalian target of rapamycin complex 1 (mTORC1) activity by modulating the TSC1/TSC2-Rheb GTPase pathway
    • Yoshida S, Hong S, Suzuki T, Nada S, Mannan AM, Wang J, Okada M, Guan KL, Inoki K. 2011. Redox regulates mammalian target of rapamycin complex 1 (mTORC1) activity by modulating the TSC1/TSC2-Rheb GTPase pathway. J Biol Chem 286:32651-32660. http://dx.doi.org/10.1074/jbc. M111.238014.
    • (2011) J Biol Chem , vol.286 , pp. 32651-32660
    • Yoshida, S.1    Hong, S.2    Suzuki, T.3    Nada, S.4    Mannan, A.M.5    Wang, J.6    Okada, M.7    Guan, K.L.8    Inoki, K.9
  • 32
    • 43049173731 scopus 로고    scopus 로고
    • Reactive oxygen species generated by thiol-modifying phenylarsine oxide stimulate the expression of protein L-isoaspartyl methyltransferase
    • Fanelus I, Desrosiers RR. 2008. Reactive oxygen species generated by thiol-modifying phenylarsine oxide stimulate the expression of protein L-isoaspartyl methyltransferase. Biochem Biophys Res Commun 371:203-208. http://dx.doi.org/10.1016/j.bbrc.2008.04.009.
    • (2008) Biochem Biophys Res Commun , vol.371 , pp. 203-208
    • Fanelus, I.1    Desrosiers, R.R.2
  • 33
    • 34247576377 scopus 로고    scopus 로고
    • Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: a review
    • Flora SJ, Bhadauria S, Kannan GM, Singh N. 2007. Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: a review. J Environ Biol 28:333-347.
    • (2007) J Environ Biol , vol.28 , pp. 333-347
    • Flora, S.J.1    Bhadauria, S.2    Kannan, G.M.3    Singh, N.4
  • 35
    • 78649348967 scopus 로고    scopus 로고
    • Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
    • Sengupta S, Peterson TR, Sabatini DM. 2010. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40:310-322. http://dx.doi.org/10.1016/j.molcel.2010.09.026.
    • (2010) Mol Cell , vol.40 , pp. 310-322
    • Sengupta, S.1    Peterson, T.R.2    Sabatini, D.M.3
  • 36
    • 79952259446 scopus 로고    scopus 로고
    • Coordination of glucose and glutamine utilization by an expanded Myc network
    • Kaadige MR, Elgort MG, Ayer DE. 2010. Coordination of glucose and glutamine utilization by an expanded Myc network. Transcription 1:36-40. http://dx.doi.org/10.4161/trns.1.1.12142.
    • (2010) Transcription , vol.1 , pp. 36-40
    • Kaadige, M.R.1    Elgort, M.G.2    Ayer, D.E.3
  • 37
    • 84879478070 scopus 로고    scopus 로고
    • TXNIP shuttling: missing link between oxidative stress and inflammasome activation
    • Lane T, Flam B, Lockey R, Kolliputi N. 2013. TXNIP shuttling: missing link between oxidative stress and inflammasome activation. Front Physiol 4:50. http://dx.doi.org/10.3389/fphys.2013.00050.
    • (2013) Front Physiol , vol.4 , pp. 50
    • Lane, T.1    Flam, B.2    Lockey, R.3    Kolliputi, N.4
  • 38
    • 80255134542 scopus 로고    scopus 로고
    • TXNIP (VDUP-1, TBP-2): a major redox regulator commonly suppressed in cancer by epigenetic mechanisms
    • Zhou J, Yu Q, Chng WJ. 2011. TXNIP (VDUP-1, TBP-2): a major redox regulator commonly suppressed in cancer by epigenetic mechanisms. Int J Biochem Cell Biol 43:1668-1673. http://dx.doi.org/10.1016/j.biocel.2011.09.005.
    • (2011) Int J Biochem Cell Biol , vol.43 , pp. 1668-1673
    • Zhou, J.1    Yu, Q.2    Chng, W.J.3
  • 39
    • 84874918845 scopus 로고    scopus 로고
    • Thioredoxin-interacting protein mediates high glucose-induced reactive oxygen species generation by mitochondria and the NADPH oxidase, Nox4, in mesangial cells
    • Shah A, Xia L, Goldberg H, Lee KW, Quaggin SE, Fantus IG. 2013. Thioredoxin-interacting protein mediates high glucose-induced reactive oxygen species generation by mitochondria and the NADPH oxidase, Nox4, in mesangial cells. J Biol Chem 288:6835-6848. http://dx.doi.org/10.1074/jbc. M112.419101.
    • (2013) J Biol Chem , vol.288 , pp. 6835-6848
    • Shah, A.1    Xia, L.2    Goldberg, H.3    Lee, K.W.4    Quaggin, S.E.5    Fantus, I.G.6
  • 40
    • 84867777934 scopus 로고    scopus 로고
    • Redox regulation by nuclear factor erythroid 2-related factor 2: gatekeeping for the basal and diabetes-induced expression of thioredoxin-interacting protein
    • He X, Ma Q. 2012. Redox regulation by nuclear factor erythroid 2-related factor 2: gatekeeping for the basal and diabetes-induced expression of thioredoxin-interacting protein. Mol Pharmacol 82:887-897. http://dx.doi.org/10.1124/mol.112.081133.
    • (2012) Mol Pharmacol , vol.82 , pp. 887-897
    • He, X.1    Ma, Q.2
  • 41
    • 84893186874 scopus 로고    scopus 로고
    • Nitrosative/oxidative stress conditions regulate thioredoxin-interacting protein (TXNIP) expression and thioredoxin-1 (TRX-1) nuclear localization
    • Ogata FT, Batista WL, Sartori A, Gesteira TF, Masutani H, Arai RJ, Yodoi J, Stern A, Monteiro HP. 2013. Nitrosative/oxidative stress conditions regulate thioredoxin-interacting protein (TXNIP) expression and thioredoxin-1 (TRX-1) nuclear localization. PLoS One 8:e84588. http://dx.doi.org/10.1371/journal.pone.0084588.
    • (2013) PLoS One , vol.8
    • Ogata, F.T.1    Batista, W.L.2    Sartori, A.3    Gesteira, T.F.4    Masutani, H.5    Arai, R.J.6    Yodoi, J.7    Stern, A.8    Monteiro, H.P.9
  • 43
    • 80055071869 scopus 로고    scopus 로고
    • MondoA senses non-glucose sugars: regulation of thioredoxin-interacting protein (TXNIP) and the hexose transport curb
    • Stoltzman CA, Kaadige MR, Peterson CW, Ayer DE. 2011. MondoA senses non-glucose sugars: regulation of thioredoxin-interacting protein (TXNIP) and the hexose transport curb. J Biol Chem 286:38027-38034. http://dx.doi.org/10.1074/jbc. M111.275503.
    • (2011) J Biol Chem , vol.286 , pp. 38027-38034
    • Stoltzman, C.A.1    Kaadige, M.R.2    Peterson, C.W.3    Ayer, D.E.4
  • 44
    • 84905270049 scopus 로고    scopus 로고
    • Minireview: thioredoxin-interacting protein: regulation and function in the pancreatic beta-cell
    • Shalev A. 2014. Minireview: thioredoxin-interacting protein: regulation and function in the pancreatic beta-cell. Mol Endocrinol 28:1211-1220. http://dx.doi.org/10.1210/me.2014-1095.
    • (2014) Mol Endocrinol , vol.28 , pp. 1211-1220
    • Shalev, A.1
  • 45
    • 84887038087 scopus 로고    scopus 로고
    • The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment
    • Versari S, Longinotti G, Barenghi L, Maier JA, Bradamante S. 2013. The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment. FASEB J 27:4466-4475. http://dx.doi.org/10.1096/fj.13-229195.
    • (2013) FASEB J , vol.27 , pp. 4466-4475
    • Versari, S.1    Longinotti, G.2    Barenghi, L.3    Maier, J.A.4    Bradamante, S.5
  • 46
    • 84894105147 scopus 로고    scopus 로고
    • Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition
    • Roberts DJ, Tan-Sah VP, Ding EY, Smith JM, Miyamoto S. 2014. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol Cell 53:521-533. http://dx.doi.org/10.1016/j.molcel.2013.12.019.
    • (2014) Mol Cell , vol.53 , pp. 521-533
    • Roberts, D.J.1    Tan-Sah, V.P.2    Ding, E.Y.3    Smith, J.M.4    Miyamoto, S.5
  • 47
    • 53049106773 scopus 로고    scopus 로고
    • Glucose activates ChREBP by increasing its rate of nuclear entry and relieving repression of its transcriptional activity
    • Davies MN, O'Callaghan BL, Towle HC. 2008. Glucose activates ChREBP by increasing its rate of nuclear entry and relieving repression of its transcriptional activity. J Biol Chem 283:24029-24038. http://dx.doi.org/10.1074/jbc. M801539200.
    • (2008) J Biol Chem , vol.283 , pp. 24029-24038
    • Davies, M.N.1    O'Callaghan, B.L.2    Towle, H.C.3
  • 48
    • 84865196738 scopus 로고    scopus 로고
    • Glucose sensing by ChREBP/MondoAMlx transcription factors
    • Havula E, Hietakangas V. 2012. Glucose sensing by ChREBP/MondoAMlx transcription factors. Semin Cell Dev Biol 23:640-647. http://dx.doi.org/10.1016/j.semcdb.2012.02.007.
    • (2012) Semin Cell Dev Biol , vol.23 , pp. 640-647
    • Havula, E.1    Hietakangas, V.2
  • 49
    • 67749111502 scopus 로고    scopus 로고
    • The LKB1-AMPK pathway: metabolism and growth control in tumour suppression
    • Shackelford DB, Shaw RJ. 2009. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9:563-575. http://dx.doi.org/10.1038/nrc2676.
    • (2009) Nat Rev Cancer , vol.9 , pp. 563-575
    • Shackelford, D.B.1    Shaw, R.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.