메뉴 건너뛰기




Volumn 45, Issue 6, 2014, Pages 838-854

Application of self-organising maps and multi-layer perceptron-artificial neural networks for streamflow and water level forecasting in data-poor catchments: The case of the Lower Shire floodplain, Malawi

Author keywords

Data poor catchments; Forecasting; Multi layer perceptron artificial neural networks; Self organising maps; Streamflow; Water level

Indexed keywords

BANKS (BODIES OF WATER); CATCHMENTS; DEVELOPING COUNTRIES; FLOOD CONTROL; FORECASTING; NEURAL NETWORKS; RISK MANAGEMENT; RUNOFF; SELF ORGANIZING MAPS; STREAM FLOW; WATER LEVELS; WEATHER FORECASTING;

EID: 84919914664     PISSN: 19989563     EISSN: 22247955     Source Type: Journal    
DOI: 10.2166/nh.2014.168     Document Type: Article
Times cited : (25)

References (70)
  • 1
    • 0035117652 scopus 로고    scopus 로고
    • Modelling sediment transfer in Malawi: Comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data sets
    • Abrahart, R. J. & White, S. M. 2000 Modelling sediment transfer in Malawi: comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data sets. Physics and Chemistry of the Earth (B) 26, 19-24.
    • (2000) Physics and Chemistry of the Earth (B) , vol.26 , pp. 19-24
    • Abrahart, R.J.1    White, S.M.2
  • 2
    • 33744900877 scopus 로고    scopus 로고
    • Artificial neural network based generalized storage-yield-reliability models using Levenberg-Marquardt algorithm
    • Adeloye, A. J. & De Munari, A. 2006 Artificial neural network based generalized storage-yield-reliability models using Levenberg-Marquardt algorithm. Journal of Hydrology 362, 215-230.
    • (2006) Journal of Hydrology , vol.362 , pp. 215-230
    • Adeloye, A.J.1    De Munari, A.2
  • 3
    • 84868463624 scopus 로고    scopus 로고
    • Self-organising map rainfall-runoff multivariate modelling for runoff reconstruction in inadequately gauged basins
    • Adeloye, A. J. & Rustum, R. 2012 Self-organising map rainfall-runoff multivariate modelling for runoff reconstruction in inadequately gauged basins. Hydrology Research 43, 603-617.
    • (2012) Hydrology Research , vol.43 , pp. 603-617
    • Adeloye, A.J.1    Rustum, R.2
  • 5
    • 34548498867 scopus 로고    scopus 로고
    • Neural networks for real time catchment flow modeling and prediction
    • Aquil, M., Kita, I., Yano, A. & Nishiyama, S. 2007 Neural networks for real time catchment flow modeling and prediction. Water Resources Management 21, 1782-1796.
    • (2007) Water Resources Management , vol.21 , pp. 1782-1796
    • Aquil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 8
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1-background and methodology
    • Bowden, G. J., Dandy, G. C. & Maier, H. R. 2005 Input determination for neural network models in water resources applications. Part 1-background and methodology. Journal of Hydrology 301, 75-92.
    • (2005) Journal of Hydrology , vol.301 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 9
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several forecasting models in the Yangtse River
    • Chau, K. W., Wu, C. L. & Li, Y. S. 2005 Comparison of several forecasting models in the Yangtse River. Journal of Hydrologic Engineering 10, 485-491.
    • (2005) Journal of Hydrologic Engineering , vol.10 , pp. 485-491
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 10
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi layer perceptrons
    • Cigizoglu, H. K. 2004 Estimation and forecasting of daily suspended sediment data by multi layer perceptrons. Advances in Water Resources 27, 185-195.
    • (2004) Advances in Water Resources , vol.27 , pp. 185-195
    • Cigizoglu, H.K.1
  • 11
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson, C. W. & Wilby, R. L. 2000 Hydrological modelling using artificial neural networks. Progress in Physical Geography 25, 80-108.
    • (2000) Progress in Physical Geography , vol.25 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 13
    • 77955353319 scopus 로고    scopus 로고
    • The use of neural network technique for the prediction of water quality parameters of Axios River in Northern Greece
    • Diamantopoulou, M. J., Antonopoulos, V. Z. & Papamichail, D. M. 2005 The use of neural network technique for the prediction of water quality parameters of Axios River in Northern Greece. European Water 11/12, 55-62.
    • (2005) European Water , vol.11-12 , pp. 55-62
    • Diamantopoulou, M.J.1    Antonopoulos, V.Z.2    Papamichail, D.M.3
  • 14
    • 84868203528 scopus 로고    scopus 로고
    • A comparative evaluation of short-term streamflow forecasting using time series analysis and rainfall-runoff models in ewater source
    • Dutta, D., Welsh,W. D., Vaze, J., Kim, S. S. H. & Nicholls, D. 2012 A comparative evaluation of short-term streamflow forecasting using time series analysis and rainfall-runoff models in ewater source. Water Resources Management 26, 4397-4415.
    • (2012) Water Resources Management , vol.26 , pp. 4397-4415
    • Dutta, D.1    Welsh, W.D.2    Vaze, J.3    Kim, S.S.H.4    Nicholls, D.5
  • 15
    • 69249201649 scopus 로고    scopus 로고
    • Directive 2007/60/EC of the European parliament and of the council
    • EU Directive 2007 Directive 2007/60/EC of the European parliament and of the council. Official Journal of the European Union L288, 27-34.
    • (2007) Official Journal of the European Union L288 , pp. 27-34
    • EU Directive1
  • 18
    • 33846820421 scopus 로고    scopus 로고
    • An artificial neural network model for mountainous water-resources management: The case of cyprus mountainous watersheds
    • Iliadis, L. S. & Maris, F. 2007 An Artificial Neural Network model for mountainous water-resources management: the case of Cyprus mountainous watersheds. Environmental Modelling & Software 22, 1066-1072.
    • (2007) Environmental Modelling & Software , vol.22 , pp. 1066-1072
    • Iliadis, L.S.1    Maris, F.2
  • 19
    • 22844446707 scopus 로고    scopus 로고
    • Infilling streamflow data using feed-forward back-propagation (bp) artificial neural networks: Application of standard bp and pseudo mac laurin power series bp techniques
    • Ilunga, M. & Stephenson, D. 2005 Infilling streamflow data using feed-forward Back-Propagation (BP) artificial neural networks: application of standard BP and Pseudo Mac Laurin Power Series BP techniques. Water SA 31, 171-176.
    • (2005) Water SA , vol.31 , pp. 171-176
    • Ilunga, M.1    Stephenson, D.2
  • 20
    • 84875520036 scopus 로고    scopus 로고
    • Modeling effects of changing land use/cover on daily streamflow: An artificial neural network and curve number based hybrid approach
    • Isik, S., Kalin, L., Schoonover, J. E., Srivastava, P. & Lockaby, B. G. 2013 Modeling effects of changing land use/cover on daily streamflow: an artificial neural network and curve number based hybrid approach. Journal of Hydrology 485, 103-112.
    • (2013) Journal of Hydrology , vol.485 , pp. 103-112
    • Isik, S.1    Kalin, L.2    Schoonover, J.E.3    Srivastava, P.4    Lockaby, B.G.5
  • 21
    • 84896845406 scopus 로고    scopus 로고
    • Artificial neural network model estimating land use change in the southwestern part of nagareyama city, chiba prefecture
    • (Y. Asami, Y. Sadahiro & T. Ishikawa, eds). CRC Press, Boca Raton
    • Ito, F. & Murata, A. 2009 Artificial neural network model estimating land use change in the Southwestern Part of Nagareyama City, Chiba Prefecture. In: New Frontiers in Urban Analysis (Y. Asami, Y. Sadahiro & T. Ishikawa, eds). CRC Press, Boca Raton, pp. 65-79.
    • (2009) New Frontiers in Urban Analysis , pp. 65-79
    • Ito, F.1    Murata, A.2
  • 22
    • 0027790279 scopus 로고
    • Calibration of conceptual models for rainfall-runoff simulation
    • Jain, S. K. 1993 Calibration of conceptual models for rainfall-runoff simulation. Hydrological Sciences Journal 38, 431-441.
    • (1993) Hydrological Sciences Journal , vol.38 , pp. 431-441
    • Jain, S.K.1
  • 23
    • 52649120830 scopus 로고    scopus 로고
    • Fitting of hydrological models: A close look at the nash-sutcliffe index
    • Jain, S. K. & Sudheer, K. P. 2008 Fitting of hydrological models: a close look at the Nash-Sutcliffe Index. Journal of Hydrologic Engineering 13, 981-986.
    • (2008) Journal of Hydrologic Engineering , vol.13 , pp. 981-986
    • Jain, S.K.1    Sudheer, K.P.2
  • 24
    • 34147214608 scopus 로고    scopus 로고
    • Interpolating monthly precipitation by self organizing map (som) and multilayer perceptron (mlp)
    • Kalteth, A. M. & Berndtsson, R. 2007 Interpolating monthly precipitation by Self Organizing Map (SOM) and Multilayer Perceptron (MLP). Hydrological Sciences 52, 305-317.
    • (2007) Hydrological Sciences , vol.52 , pp. 305-317
    • Kalteth, A.M.1    Berndtsson, R.2
  • 26
    • 0000769964 scopus 로고
    • Time of concentration from small agricultural watersheds
    • Kirpich, Z. P. 1940 Time of concentration from small agricultural watersheds. Civil Engineering 10, 362.
    • (1940) Civil Engineering , vol.10 , pp. 362
    • Kirpich, Z.P.1
  • 29
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of goodness-of fit measures in hydrologic and hydroclimatic model validation
    • Legates, D. R. & Mccabe, G. J. 1999 Evaluating the use of goodness-of fit measures in hydrologic and hydroclimatic model validation. Water Resources Research 35, 233-241.
    • (1999) Water Resources Research , vol.35 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 30
    • 27644505419 scopus 로고    scopus 로고
    • Flood forecasting using a fully distributed model: Application of the TOPKAPI model to the upper Xixian catchment
    • Liu, Z., Martina, M. L. & Todini, E. 2005 Flood forecasting using a fully distributed model: application of the TOPKAPI model to the upper Xixian catchment. Hydrology and Earth System Sciences 9, 347-364.
    • (2005) Hydrology and Earth System Sciences , vol.9 , pp. 347-364
    • Liu, Z.1    Martina, M.L.2    Todini, E.3
  • 31
    • 84881235346 scopus 로고    scopus 로고
    • Advanced monitoring platform for industrial wastewater treatment: Multivariate approach using the self-organizing map
    • Liukkonen, M., Laakso, I. & Hiltunen, Y. 2013 Advanced monitoring platform for industrial wastewater treatment: multivariate approach using the self-organizing map. Environmental Modelling and Software 48, 193-201.
    • (2013) Environmental Modelling and Software , vol.48 , pp. 193-201
    • Liukkonen, M.1    Laakso, I.2    Hiltunen, Y.3
  • 32
    • 77953760340 scopus 로고    scopus 로고
    • Sustainable flood risk management strategies to reduce rural communities' vulnerability to flooding in Mozambique
    • Lumbroso, D., Ramsbottom, D. & Spaliveiro, M. 2008 Sustainable flood risk management strategies to reduce rural communities' vulnerability to flooding in Mozambique. Journal of Flood Risk Management 1, 34-42.
    • (2008) Journal of Flood Risk Management , vol.1 , pp. 34-42
    • Lumbroso, D.1    Ramsbottom, D.2    Spaliveiro, M.3
  • 33
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H. R. & Dandy, G. C. 2000 Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling and Software 25, 101-124.
    • (2000) Environmental Modelling and Software , vol.25 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 34
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions
    • Maier, H. R., Jain, A., Dandy, G. C. & Sudheer, D. 2010 Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environmental Modelling and Software 891-909.
    • (2010) Environmental Modelling and Software , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, D.4
  • 39
    • 84868485963 scopus 로고    scopus 로고
    • Infilling of missing rainfall and streamflow data in the Shire River basin, Malawi-a self organizing map approach
    • Mwale, F. D., Adeloye, A. J. & Rustum, R. 2012 Infilling of missing rainfall and streamflow data in the Shire River basin, Malawi-a self organizing map approach. Journal of Physics and Chemistry of the Earth 50-52, 34-43.
    • (2012) Journal of Physics and Chemistry of the Earth , vol.50-52 , pp. 34-43
    • Mwale, F.D.1    Adeloye, A.J.2    Rustum, R.3
  • 41
    • 32044458602 scopus 로고    scopus 로고
    • Groundwater level forecasting in a shallow aquifer using artificial neural network approach
    • Nayak, P. C., Rao, S. Y. R. & Sudheer, K. P. 2006 Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resources Management 20, 77-90.
    • (2006) Water Resources Management , vol.20 , pp. 77-90
    • Nayak, P.C.1    Rao, S.Y.R.2    Sudheer, K.P.3
  • 43
    • 49249089172 scopus 로고    scopus 로고
    • River flow forecasting
    • (D. W. Knight & A. Y. Shamseldin, eds). Taylor & Francis, London
    • O'Connor, K. M. 2005 River flow forecasting. In: River Basin Modelling for Flood Risk Mitigation (D. W. Knight & A. Y. Shamseldin, eds). Taylor & Francis, London.
    • (2005) River Basin Modelling for Flood Risk Mitigation
    • O'connor, K.M.1
  • 44
    • 84859990240 scopus 로고    scopus 로고
    • Application of Levenberg-Marquardt optimization algorithm based multilayer neural networks for hydrological time series modeling
    • Okkan, U. 2011 Application of Levenberg-Marquardt optimization algorithm based multilayer neural networks for hydrological time series modeling. An International Journal of Optimization and Control: Theories and Applications 1, 53-63.
    • (2011) An International Journal of Optimization and Control: Theories and Applications , vol.1 , pp. 53-63
    • Okkan, U.1
  • 45
    • 25844457225 scopus 로고    scopus 로고
    • Artificial neural networks application in lake water quality estimation using satellite imagery
    • Panda, S. S., Garg, V. & Chaubey, I. 2004 Artificial neural networks application in lake water quality estimation using satellite imagery. Journal of Environmental Informatics 4, 65-74.
    • (2004) Journal of Environmental Informatics , vol.4 , pp. 65-74
    • Panda, S.S.1    Garg, V.2    Chaubey, I.3
  • 46
    • 76749145240 scopus 로고    scopus 로고
    • Classification of hydrological models for flood management
    • Plate, E. J. 2009 Classification of hydrological models for flood management. Hydrology and Earth System Sciences 13, 1939-1951.
    • (2009) Hydrology and Earth System Sciences , vol.13 , pp. 1939-1951
    • Plate, E.J.1
  • 48
    • 84877088871 scopus 로고    scopus 로고
    • Development of the Jamuneswari flood forecasting system: Case study in Bangladesh
    • Rahman, M., Goel, N. & Arya, D. 2012 Development of the Jamuneswari flood forecasting system: case study in Bangladesh. Journal of Hydrologic Engineering 17, 1123-1140.
    • (2012) Journal of Hydrologic Engineering , vol.17 , pp. 1123-1140
    • Rahman, M.1    Goel, N.2    Arya, D.3
  • 49
    • 34547875061 scopus 로고    scopus 로고
    • Replacing outliers and missing values from activated sludge data using Kohonen selforganizing map
    • Rustum, R. & Adeloye, A. J. 2007 Replacing outliers and missing values from activated sludge data using Kohonen selforganizing map. Journal of Environmental Engineering 133, 909-916.
    • (2007) Journal of Environmental Engineering , vol.133 , pp. 909-916
    • Rustum, R.1    Adeloye, A.J.2
  • 51
    • 33746010562 scopus 로고    scopus 로고
    • Calibration and validation of a physically distributed hydrological model, MIKE SHE, to predict streamflow at high frequency in a flashy mountainous Hawaii stream
    • Sahoo, G. B., Ray, C. & De Carlo, E. H. 2006 Calibration and validation of a physically distributed hydrological model, MIKE SHE, to predict streamflow at high frequency in a flashy mountainous Hawaii stream. Journal of Hydrology 327, 94-109.
    • (2006) Journal of Hydrology , vol.327 , pp. 94-109
    • Sahoo, G.B.1    Ray, C.2    De Carlo, E.H.3
  • 52
    • 80051540512 scopus 로고    scopus 로고
    • Estimation of flow in ungauged catchments by coupling a hydrological model and neural networks: Case study
    • Saliha, A. H., Awulachew, S. B., Cullmann, J. & Horlacher, H. 2011 Estimation of flow in ungauged catchments by coupling a hydrological model and neural networks: case study. Hydrology Research 42, 386-400.
    • (2011) Hydrology Research , vol.42 , pp. 386-400
    • Saliha, A.H.1    Awulachew, S.B.2    Cullmann, J.3    Horlacher, H.4
  • 53
    • 33746646791 scopus 로고    scopus 로고
    • An analysis of the current practice of policies on river flood risk management in different countries
    • Samuels, P., Klijn, F. & Dijkman, J. 2006 An analysis of the current practice of policies on river flood risk management in different countries. Irrigation and Drainage 55, 141-150.
    • (2006) Irrigation and Drainage , vol.55 , pp. 141-150
    • Samuels, P.1    Klijn, F.2    Dijkman, J.3
  • 54
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • Shamseldin, A. Y. 1997 Application of a Neural Network Technique to Rainfall-Runoff Modelling. Journal of Hydrology 199, 272-294.
    • (1997) Journal of Hydrology , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 56
  • 57
    • 0037565156 scopus 로고    scopus 로고
    • Model Trees as an alternative to neural networks in rainfall-runoff modelling
    • Solomantine, D. P. & Dulal, K. N. 2003 Model Trees as an alternative to neural networks in rainfall-runoff modelling. Hydrological Sciences Journal 48, 399-411.
    • (2003) Hydrological Sciences Journal , vol.48 , pp. 399-411
    • Solomantine, D.P.1    Dulal, K.N.2
  • 58
    • 0037197571 scopus 로고    scopus 로고
    • A datadriven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer, K. P., Gosain, A. K. & Ramasastri, K. S. 2002 A datadriven algorithm for constructing artificial neural network rainfall-runoff models. Hydrological Processes 16, 1325-1330.
    • (2002) Hydrological Processes , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 62
    • 0030483015 scopus 로고    scopus 로고
    • The ARNO rainfall-runoff model
    • Todini, E. 1996 The ARNO rainfall-runoff model. Journal of Hydrology 175, 339-382.
    • (1996) Journal of Hydrology , vol.175 , pp. 339-382
    • Todini, E.1
  • 63
    • 37549066943 scopus 로고    scopus 로고
    • Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modeling
    • Toth, E. & Brath, A. 2007 Multistep ahead streamflow forecasting: role of calibration data in conceptual and neural network modeling. Water Resources Research, 43.
    • (2007) Water Resources Research , vol.43
    • Toth, E.1    Brath, A.2
  • 67
    • 79952006341 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis
    • Wu, C. L. & Chau, K. W. 2011 Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis. Journal of Hydrology 399, 394-409.
    • (2011) Journal of Hydrology , vol.399 , pp. 394-409
    • Wu, C.L.1    Chau, K.W.2
  • 68
    • 65749118118 scopus 로고    scopus 로고
    • Methods to improve neural network performance in daily flows prediction
    • Wu, C. L., Chau, K.W. & Li, Y. S. 2009 Methods to improve neural network performance in daily flows prediction. Journal of Hydrology 372, 80-93.
    • (2009) Journal of Hydrology , vol.372 , pp. 80-93
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 69
    • 26444486481 scopus 로고    scopus 로고
    • Application of linear and non-linear techniques in riverflow forecasting in kilombero river basin, tanzania
    • Yawson, D. K., Kongo, V. M. & Kachroo, R. K. 2005 Application of linear and non-linear techniques in riverflow forecasting in Kilombero River Basin, Tanzania. Hydrologic Sciences 50, 783-796.
    • (2005) Hydrologic Sciences , vol.50 , pp. 783-796
    • Yawson, D.K.1    Kongo, V.M.2    Kachroo, R.K.3
  • 70
    • 77958511566 scopus 로고    scopus 로고
    • An automated artificial neural network system for land use/land cover classification from Landsat TM Imagery
    • Yuan, H., Van Der Wiele, C. F. & Khorram, S. 2009 An automated artificial neural network system for land use/land cover classification from Landsat TM Imagery. Remote Sensing 1, 243-265.
    • (2009) Remote Sensing , vol.1 , pp. 243-265
    • Yuan, H.1    Van Der Wiele, C.F.2    Khorram, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.