메뉴 건너뛰기




Volumn 43, Issue 5, 2012, Pages 603-617

Self-organising map rainfall-runoff multivariate modelling for runoff reconstruction in inadequately gauged basins

Author keywords

Hydrological data; Nigeria; Rainfall runoff modelling; Self organising map (SOM); Water resources assessment

Indexed keywords

INFORMATION MANAGEMENT; NEURAL NETWORKS; RAIN; SELF ORGANIZING MAPS; WATER MANAGEMENT;

EID: 84868463624     PISSN: 00291277     EISSN: None     Source Type: Journal    
DOI: 10.2166/nh.2012.017     Document Type: Article
Times cited : (29)

References (40)
  • 2
    • 0029667360 scopus 로고    scopus 로고
    • An opportunity loss model for estimating value of streamflow data for reservoir planning
    • Adeloye, A. J. 1996 An opportunity loss model for estimating value of streamflow data for reservoir planning. Water Resources Management 10, 45-79.
    • (1996) Water Resources Management , vol.10 , pp. 45-79
    • Adeloye, A.J.1
  • 3
    • 67349276109 scopus 로고    scopus 로고
    • The relative utility of multiple regression and ANN models for rapidly predicting the capacity of water supply reservoirs
    • Adeloye, A. J. 2009 The relative utility of multiple regression and ANN models for rapidly predicting the capacity of water supply reservoirs. Environmental Modelling and Software 24, 1233-1240.
    • (2009) Environmental Modelling and Software , vol.24 , pp. 1233-1240
    • Adeloye, A.J.1
  • 5
    • 80052072652 scopus 로고    scopus 로고
    • Kohonen selforganising map estimator for the reference crop evapotranspiration
    • Adeloye, A. J., Rustum, R. & Ibrahim, I. D. 2001 Kohonen selforganising map estimator for the reference crop evapotranspiration. Water Resource Research 47, W08523.
    • (2001) Water Resource Research , vol.47
    • Adeloye, A.J.1    Rustum, R.2    Ibrahim, I.D.3
  • 8
    • 1842426595 scopus 로고    scopus 로고
    • Comparison of staticfeedforward and dynamic-feedforward neural networks for rainfall-runoff modelling
    • Chang,Y. M., Chang, L. C.&Chang, F. J. 2004Comparison of staticfeedforward and dynamic-feedforward neural networks for rainfall-runoff modelling. Journal of Hydrology 290, 297-311.
    • (2004) Journal of Hydrology , vol.290 , pp. 297-311
    • Changy, M.1    Chang, L.C.2    Chang, F.J.3
  • 9
    • 77649185559 scopus 로고    scopus 로고
    • Assessing the effort of meteorological variables for evaporation estimation by self-organizing map neural network
    • Chang, F. J., Chang, L. C., Kao, H. S. & Wu, G. W. 2010 Assessing the effort of meteorological variables for evaporation estimation by self-organizing map neural network. Journal of Hydrology 384, 118-129.
    • (2010) Journal of Hydrology , vol.384 , pp. 118-129
    • Chang, F.J.1    Chang, L.C.2    Kao, H.S.3    Wu, G.W.4
  • 11
    • 84870810355 scopus 로고
    • IH, Hydrological Studies. Institute of Hydrology, Wallingford, England
    • IH 1975 Flood Studies Report. Vol. I- Hydrological Studies. Institute of Hydrology, Wallingford, England. 550 pp.
    • (1975) Flood Studies Report , vol.1
  • 12
    • 84870813151 scopus 로고    scopus 로고
    • IH, Institute of Hydrology, Wallingford, England
    • IH 1999 Flood Estimation Handbook (5 Volumes). Institute of Hydrology, Wallingford, England.
    • (1999) Flood Estimation Handbook , vol.5
  • 13
    • 0004597628 scopus 로고
    • Process monitoring and visualization using self organizing map
    • Ch. 14 (A. B. Bulsari, ed.). Elsevier Science, Dordrecht, The Netherlands
    • Kangas, J. & Simula, O. 1995 Process monitoring and visualization using self organizing map. In: Neural Networks for Chemical Engineers, Ch. 14 (A. B. Bulsari, ed.). Elsevier Science, Dordrecht, The Netherlands.
    • (1995) Neural Networks for Chemical Engineers
    • Kangas, J.1    Simula, O.2
  • 15
    • 0030270228 scopus 로고    scopus 로고
    • Engineering applications of the self organising map
    • Kohonen, T., Simula, O. & Visa, A. 1996 Engineering applications of the self organising map. IEEE 84, 1358-1384.
    • (1996) IEEE , vol.84 , pp. 1358-1384
    • Kohonen, T.1    Simula, O.2    Visa, A.3
  • 16
    • 18844434900 scopus 로고    scopus 로고
    • Low flow estimates from short stream flow records-a comparison of methods
    • Laaha, G. & Bloschl, G. 2005 Low flow estimates from short stream flow records-a comparison of methods. Journal of Hydrology 306, 264-286.
    • (2005) Journal of Hydrology , vol.306 , pp. 264-286
    • Laaha, G.1    Bloschl, G.2
  • 17
    • 34547758014 scopus 로고    scopus 로고
    • A national low flow estimation procedure for Austria
    • Laaha, G. & Bloschl, G. 2007 A national low flow estimation procedure for Austria. Hydrological Sciences Journal 52, 625-644.
    • (2007) Hydrological Sciences Journal , vol.52 , pp. 625-644
    • Laaha, G.1    Bloschl, G.2
  • 21
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A. W. & Hall, M. J. 1996 Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal 41, 399-417.
    • (1996) Hydrological Sciences Journal , vol.41 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 22
    • 52649174213 scopus 로고    scopus 로고
    • Prediction of daily flow duration curves and streamflow for ungauged catchments using regional flow duration curves
    • Mohamoud, Y. M. 2008 Prediction of daily flow duration curves and streamflow for ungauged catchments using regional flow duration curves. Hydrological Sciences Journal 53, 706-724.
    • (2008) Hydrological Sciences Journal , vol.53 , pp. 706-724
    • Mohamoud, Y.M.1
  • 24
    • 33745435792 scopus 로고    scopus 로고
    • Spiking modular neural networks: A neural network modelling approach for hydrological processes
    • Parasuraman, K. A., Elshorbagy, A. & Carey, S. K. 2006 Spiking modular neural networks: a neural network modelling approach for hydrological processes. Water Resource Research 42, W05412.
    • (2006) Water Resource Research , vol.42
    • Parasuraman, K.A.1    Elshorbagy, A.2    Carey, S.K.3
  • 25
    • 18144418529 scopus 로고    scopus 로고
    • Using self-organising maps to visualize high dimensional data
    • Penn, B. S. 2005 Using self-organising maps to visualize high dimensional data. Computers and Goesciences 31, 531-544.
    • (2005) Computers and Goesciences , vol.31 , pp. 531-544
    • Penn, B.S.1
  • 26
    • 84855528144 scopus 로고    scopus 로고
    • Forecasting monthly precipitation in central Chile: A self-organising map approach using filtered sea surface temperature
    • Rivera, D., Lillo, M., Uvo, C. B., Billib, M. & Arumi, J. L. 2001 Forecasting monthly precipitation in central Chile: a self-organising map approach using filtered sea surface temperature. Theoretical and Applied Climatology 107 (1-2), 1-13.
    • (2001) Theoretical and Applied Climatology , vol.107 , Issue.1-2 , pp. 1-13
    • Rivera, D.1    Lillo, M.2    Uvo, C.B.3    Billib, M.4    Arumi, J.L.5
  • 27
    • 34547875061 scopus 로고    scopus 로고
    • Replacing outliers and missing values from activated sludge data using Kohonen self organising map
    • Rustum, R. & Adeloye, A. J. 2007 Replacing outliers and missing values from activated sludge data using Kohonen self organising map. Journal of Environmental Engineering, ASCE 133, 909-916.
    • (2007) Journal of Environmental Engineering, ASCE , vol.133 , pp. 909-916
    • Rustum, R.1    Adeloye, A.J.2
  • 29
    • 39749167837 scopus 로고    scopus 로고
    • Applying Kohonen self-organising map as a software sensor to predict the biochemical oxygen demand
    • Rustum, R., Adeloye, A. J. & Scholz, M. 2008 Applying Kohonen self-organising map as a software sensor to predict the biochemical oxygen demand. Water Environment Research 80, 32-40,43.
    • (2008) Water Environment Research , vol.80 , pp. 32-4043
    • Rustum, R.1    Adeloye, A.J.2    Scholz, M.3
  • 30
    • 0342506462 scopus 로고    scopus 로고
    • Application of neural network technique to rainfall-runoff modelling
    • Shamseldin, A. Y. 1997 Application of neural network technique to rainfall-runoff modelling. Journal of Hydrology 199, 272-294.
    • (1997) Journal of Hydrology , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 32
    • 0019227474 scopus 로고
    • Fitting log-normal distribution to hydrologic data
    • Stedinger, J. R. 1980 Fitting log-normal distribution to hydrologic data. Water Resource Research 16, 481-490.
    • (1980) Water Resource Research , vol.16 , pp. 481-490
    • Stedinger, J.R.1
  • 33
    • 0001874255 scopus 로고
    • Frequency analysis of extreme events
    • Chapter 19 (D. R. Maidment, ed.). McGraw-Hill, New York, USA
    • Stedinger, J. R., Vogel, R. M. & Foufoula-Georgiou, E. 1983 Frequency analysis of extreme events. In: Handbook of Applied Hydrology, Chapter 19 (D. R. Maidment, ed.). McGraw-Hill, New York, USA.
    • (1983) Handbook of Applied Hydrology
    • Stedinger, J.R.1    Vogel, R.M.2    Foufoula-Georgiou, E.3
  • 34
    • 33947537656 scopus 로고    scopus 로고
    • Determination of volatile characteristics of Greek and Turkish pine honey samples and their classification by using Kohonen self organizing maps
    • Tananaki, C., Thrasyvoulou, A., Giraudel, J. L.&Montury,M. 2007 Determination of volatile characteristics of Greek and Turkish pine honey samples and their classification by using Kohonen self organizing maps. Food Chemistry 101, 1687-1693.
    • (2007) Food Chemistry , vol.101 , pp. 1687-1693
    • Tananaki, C.1    Thrasyvoulou, A.2    Giraudel, J.L.3    Montury, M.4
  • 36
  • 39
    • 0034210782 scopus 로고    scopus 로고
    • Spatial scaling properties of annual streamflow in the United States
    • Vogel, R. M. & Sankarasubramanian, A. 2000 Spatial scaling properties of annual streamflow in the United States. Hydrological Sciences Journal 45, 465-476.
    • (2000) Hydrological Sciences Journal , vol.45 , pp. 465-476
    • Vogel, R.M.1    Sankarasubramanian, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.