-
1
-
-
65349141740
-
A spectral method for pantograph-type delay differential equations and its convergence analysis
-
I. ALI, H. BRUNNER, AND T. TANG, A spectral method for pantograph-type delay differential equations and its convergence analysis, J. Comput. Math., 27(2009), pp. 254-265.
-
(2009)
J. Comput. Math.
, vol.27
, pp. 254-265
-
-
Ali, I.1
Brunner, H.2
Tang, T.3
-
2
-
-
84870253876
-
The effect of anti-viral drug treatment of human immunodeficiency virus type 1 (HIV-1) described by a fractional order model
-
A. A. M. ARAFA, S. Z. RIDA, AND M. KHALIL, The effect of anti-viral drug treatment of human immunodeficiency virus type 1 (HIV-1) described by a fractional order model, Appl. Math. Model., 37(2013), pp. 2189-2196.
-
(2013)
Appl. Math. Model.
, vol.37
, pp. 2189-2196
-
-
Arafa, A.A.M.1
Rida, S.Z.2
Khalil, M.3
-
3
-
-
0014505877
-
Integral representations for Jacobi polynomials and some applications
-
R. ASKEY AND J. FITCH, Integral representations for Jacobi polynomials and some applications, J. Math. Anal. Appl., 26(1969), pp. 411-437.
-
(1969)
J. Math. Anal. Appl.
, vol.26
, pp. 411-437
-
-
Askey, R.1
Fitch, J.2
-
4
-
-
0035014974
-
Subordinated advection-dispersion equation for contaminant transport
-
B. BAEUMER, D. A. BENSON, M. M. MEERSCHAERT, AND S. W. WHEATCRAFT, Subordinated advection-dispersion equation for contaminant transport, Water Resources Res., 37(2001), pp. 1543-1550.
-
(2001)
Water Resources Res.
, vol.37
, pp. 1543-1550
-
-
Baeumer, B.1
Benson, D.A.2
Meerschaert, M.M.3
Wheatcraft, S.W.4
-
5
-
-
33746355085
-
Numerical methods for delay differential equations
-
Oxford University Press, Oxford
-
A. BELLEN AND M. ZENNARO, Numerical Methods for Delay Differential Equations, Numer. Math. Sci. Comput., Oxford University Press, Oxford, 2003.
-
(2003)
Numer. Math. Sci. Comput.
-
-
Bellen, A.1
Zennaro, M.2
-
6
-
-
84919638217
-
Existence and uniqueness for semilinear fractional differential equations with infinite delay via resolvent operators
-
M. BELMEKKI, K. MEKHALFI, AND S. K. NTOUYAS, Existence and uniqueness for semilinear fractional differential equations with infinite delay via resolvent operators, J. Fract. Calc. Appl., 4(2013), pp. 267-282.
-
(2013)
J. Fract. Calc. Appl.
, vol.4
, pp. 267-282
-
-
Belmekki, M.1
Mekhalfi, K.2
Ntouyas, S.K.3
-
7
-
-
84919644356
-
Impulsive differential equations of fractional order with infinite delay
-
M. BENCHOHRA AND Z. BOUTEFAL, Impulsive differential equations of fractional order with infinite delay, J. Fract. Calc. Appl., 4(2013), pp. 209-223.
-
(2013)
J. Fract. Calc. Appl.
, vol.4
, pp. 209-223
-
-
Benchohra, M.1
Boutefal, Z.2
-
8
-
-
34848916710
-
Existence results for fractional order functional differential equations with infinite delay
-
M. BENCHOHRA, J. HENDERSON, S. K. NTOUYAS, AND A. OUAHAB, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., 338(2008), pp. 1340-1350.
-
(2008)
J. Math. Anal. Appl.
, vol.338
, pp. 1340-1350
-
-
Benchohra, M.1
Henderson, J.2
Ntouyas, S.K.3
Ouahab, A.4
-
9
-
-
85162414027
-
A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order
-
S. BHALEKAR AND V. DAFTARDAR-GEJJI, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, J. Fract. Calc. Appl., 1(2011), pp. 1-9.
-
(2011)
J. Fract. Calc. Appl.
, vol.1
, pp. 1-9
-
-
Bhalekar, S.1
Daftardar-Gejji, V.2
-
10
-
-
63049114686
-
-
Springer-Verlag, Berlin
-
C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI, AND T. A. ZANG, Spectral Methods, Springer-Verlag, Berlin, 2006.
-
(2006)
Spectral Methods
-
-
Canuto, C.1
Hussaini, M.Y.2
Quarteroni, A.3
Zang, T.A.4
-
11
-
-
77952816520
-
Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel
-
Y. CHEN AND T. TANG, Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel, Math. Comp., 79(2010), pp. 147-167.
-
(2010)
Math. Comp.
, vol.79
, pp. 147-167
-
-
Chen, Y.1
Tang, T.2
-
12
-
-
1642380503
-
A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay
-
R. V. CULSHAW, S. RUAN, AND G. WEBB, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, J. Math. Biol., 46(2003), pp. 425-444.
-
(2003)
J. Math. Biol.
, vol.46
, pp. 425-444
-
-
Culshaw, R.V.1
Ruan, S.2
Webb, G.3
-
13
-
-
33748930464
-
Stability of N-dimensional linear systems with multiple delays and application to synchronization
-
W. DENG, J. LU, AND CH. LI, Stability of N-dimensional linear systems with multiple delays and application to synchronization, J. Syst. Sci. Complex., 19(2006), pp. 149-156.
-
(2006)
J. Syst. Sci. Complex.
, vol.19
, pp. 149-156
-
-
Deng, W.1
Lu, J.2
Li, C.H.3
-
14
-
-
0037081673
-
Analysis of fractional differential equations
-
K. DIETHELM AND N. J. FORD, Analysis of fractional differential equations, J. Math. Anal. Appl., 265(2002), pp. 229-248.
-
(2002)
J. Math. Anal. Appl.
, vol.265
, pp. 229-248
-
-
Diethelm, K.1
Ford, N.J.2
-
16
-
-
33646262074
-
Variational formulation for the stationary fractional advection dispersion equation
-
V. J. ERVIN AND J. P. ROOP, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations, 22(2006), pp. 558-576.
-
(2006)
Numer. Methods Partial Differential Equations
, vol.22
, pp. 558-576
-
-
Ervin, V.J.1
Roop, J.P.2
-
17
-
-
33646341532
-
Comparison of numerical methods for fractional differential equations
-
N. J. FORD AND J. A. CONNOLLY, Comparison of numerical methods for fractional differential equations, Commun. Pure Appl. Anal., 5(2006), pp. 289-306.
-
(2006)
Commun. Pure Appl. Anal.
, vol.5
, pp. 289-306
-
-
Ford, N.J.1
Connolly, J.A.2
-
18
-
-
0001424019
-
On a functional differential equation
-
L. FOX, D. F. MAYERS, J. R. OCKENDON, AND A. B. TAYLER, On a functional differential equation, J. Inst. Math. Appl., 8(1971), pp. 271-307.
-
(1971)
J. Inst. Math. Appl.
, vol.8
, pp. 271-307
-
-
Fox, L.1
Mayers, D.F.2
Ockendon, J.R.3
Tayler, A.B.4
-
19
-
-
0003324723
-
Introduction to functional-differential equations
-
Springer-Verlag, Berlin
-
J. K. HALE AND S. M. VERDUYN LUNEL, Introduction to Functional-Differential Equations, Appl. Math. Sci. 99, Springer-Verlag, Berlin, 1993.
-
(1993)
Appl. Math. Sci.
, vol.99
-
-
Hale, J.K.1
Verduyn Lunel, S.M.2
-
20
-
-
84861729690
-
Analytical and numerical methods for the stability analysis of linear fractional delay differential equations
-
E. KASLIK AND S. SIVASUNDARAM, Analytical and numerical methods for the stability analysis of linear fractional delay differential equations, J. Comput. Appl. Math., 236(2012), pp. 4027-4041.
-
(2012)
J. Comput. Appl. Math.
, vol.236
, pp. 4027-4041
-
-
Kaslik, E.1
Sivasundaram, S.2
-
21
-
-
84966219417
-
The functional-differential equation y' (x) = ay (λx) + by (x)
-
T. KATO AND J. B. MCLEOD, The functional-differential equation y' (x) = ay (λx) + by (x), Bull. Amer. Math. Soc, 77(1971), pp. 891-937.
-
(1971)
Bull. Amer. Math. Soc
, vol.77
, pp. 891-937
-
-
Kato, T.1
McLeod, J.B.2
-
22
-
-
84857583048
-
The approximate and exact solutions of the fractionalorder delay differential equations using Legendre pseudospectral method
-
M. M. KHADER AND A. S. HENDY, The approximate and exact solutions of the fractionalorder delay differential equations using Legendre pseudospectral method, Int. J. Pure Appl. Math., 74(2012), pp. 287-297.
-
(2012)
Int. J. Pure Appl. Math.
, vol.74
, pp. 287-297
-
-
Khader, M.M.1
Hendy, A.S.2
-
23
-
-
85162517595
-
Efficient spectral collocation method for solving multi-term fractional differential equations based on the generalized Laguerre polynomials
-
M. M. KHADER, T. S. EL DANAF, AND A. S. HENDY, Efficient spectral collocation method for solving multi-term fractional differential equations based on the generalized Laguerre polynomials, J. Fract. Calc. Appl., 3(2012), pp. 1-14.
-
(2012)
J. Fract. Calc. Appl.
, vol.3
, pp. 1-14
-
-
Khader, M.M.1
El Danaf, T.S.2
Hendy, A.S.3
-
24
-
-
77956684069
-
Theory and applications of fractional differential equations
-
Elsevier Science B. V., Amsterdam
-
A. A. KILBAS, H. M. SRIVASTAVA, AND J. J. TRUJILLO, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier Science B. V., Amsterdam, 2006.
-
(2006)
North-holland Mathematics Studies
, vol.204
-
-
Kilbas, A.A.1
Srivastava, H.M.2
Trujillo, J.J.3
-
25
-
-
80052263106
-
Asymptotic properties of fractional delay differential equations
-
K. KROL, Asymptotic properties of fractional delay differential equations, Appl. Math. Comput., 218(2011), pp. 1515-1532.
-
(2011)
Appl. Math. Comput.
, vol.218
, pp. 1515-1532
-
-
Krol, K.1
-
26
-
-
51349139941
-
Theory of fractional functional differential equations
-
V. LAKSHMIKANTHAM, Theory of fractional functional differential equations, Nonlinear Anal., 69(2008), pp. 3337-3343.
-
(2008)
Nonlinear Anal.
, vol.69
, pp. 3337-3343
-
-
Lakshmikantham, V.1
-
27
-
-
58149145450
-
Finite-time stability analysis of fractional order timedelay systems: Gronwall's approach
-
M. P. LAZAREVIĆ AND A. M. SPASIĆ, Finite-time stability analysis of fractional order timedelay systems: Gronwall's approach, Math. Comput. Modelling, 49(2009), pp. 475-481.
-
(2009)
Math. Comput. Modelling
, vol.49
, pp. 475-481
-
-
Lazarević, M.P.1
Spasić, A.M.2
-
28
-
-
65049090377
-
Numerical algorithm based on Adomian decomposition for fractional differential equations
-
CH. LI AND Y. WANG, Numerical algorithm based on Adomian decomposition for fractional differential equations, Comput. Math. Appl., 57(2009), pp. 1672-1681.
-
(2009)
Comput. Math. Appl.
, vol.57
, pp. 1672-1681
-
-
Li, C.H.1
Wang, Y.2
-
29
-
-
77958536189
-
A space-time spectral method for the time fractional diffusion equation
-
X. LI AND CH. XU, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47(2009), pp. 2108-2131.
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 2108-2131
-
-
Li, X.1
Xu, C.H.2
-
30
-
-
34547548712
-
Finite difference/spectral approximations for the time-fractional diffusion equation
-
Y. LIN AND CH. XU, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225(2007), pp. 1533-1552.
-
(2007)
J. Comput. Phys.
, vol.225
, pp. 1533-1552
-
-
Lin, Y.1
Xu, C.H.2
-
31
-
-
0007096742
-
Fractional diffusive waves in viscoelastic solids
-
ASME, Fairfield, NJ
-
F. MAINARDI, Fractional diffusive waves in viscoelastic solids, in Nonlinear Waves in Solids, ASME, Fairfield, NJ, 1995, pp. 93-97.
-
(1995)
Nonlinear Waves in Solids
, pp. 93-97
-
-
Mainardi, F.1
-
32
-
-
84901609528
-
Analysis and numerical methods for fractional differential equations with delay
-
M. L. MORGADO, N. J. FORD, AND P. M. LIMA, Analysis and numerical methods for fractional differential equations with delay, J. Comput. Appl. Math., 252(2013), pp. 159-168.
-
(2013)
J. Comput. Appl. Math.
, vol.252
, pp. 159-168
-
-
Morgado, M.L.1
Ford, N.J.2
Lima, P.M.3
-
33
-
-
84876136167
-
Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations
-
K. MUSTAPHA AND W. MCLEAN, Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations, SIAM J. Numer. Anal., 51(2013), pp. 491-515.
-
(2013)
SIAM J. Numer. Anal.
, vol.51
, pp. 491-515
-
-
Mustapha, K.1
McLean, W.2
-
34
-
-
79951512760
-
On Legendre polynomial approximation with the VIM or HAM for numerical treatment of nonlinear fractional differential equations
-
Z. ODIBAT, On Legendre polynomial approximation with the VIM or HAM for numerical treatment of nonlinear fractional differential equations, J. Comput. Appl. Math., 235(2011), pp. 2956-2968.
-
(2011)
J. Comput. Appl. Math.
, vol.235
, pp. 2956-2968
-
-
Odibat, Z.1
-
35
-
-
84919676120
-
Delayed random walks: Investigating the interplay between delay and noise
-
Springer-Verlag, Berlin
-
T. OHIRA AND J. MILTON, Delayed random walks: Investigating the interplay between delay and noise, in Delay Differential Equations, Springer-Verlag, Berlin, 2009, pp. 1-31.
-
(2009)
Delay Differential Equations
, pp. 1-31
-
-
Ohira, T.1
Milton, J.2
-
36
-
-
45849155458
-
Fractional Langevin model of memory in financial markets
-
S. PICOZZI AND B. J. WEST, Fractional Langevin model of memory in financial markets, Phys. Rev. E (3), 66(2002), 046118.
-
(2002)
Phys. Rev. E (3)
, vol.66
, pp. 046118
-
-
Picozzi, S.1
West, B.J.2
-
37
-
-
0342586404
-
Numerical solution of ordinary fractional differential equations by the fractional difference method
-
Gordon and Breach, Amsterdam
-
I. PODLUBNY, Numerical solution of ordinary fractional differential equations by the fractional difference method, in Advances in Difference Equations, Gordon and Breach, Amsterdam, 1997, pp. 507-515.
-
(1997)
Advances in Difference Equations
, pp. 507-515
-
-
Podlubny, I.1
-
39
-
-
0034275979
-
Fractional calculus and continuous-time finance
-
E. SCALAS, R. GORENFLO, AND F. MAINARDI, Fractional calculus and continuous-time finance, Phys. A, 284(2000), pp. 376-384.
-
(2000)
Phys. A
, vol.284
, pp. 376-384
-
-
Scalas, E.1
Gorenflo, R.2
Mainardi, F.3
-
40
-
-
0035130739
-
Eulerian derivation of the fractional advection-dispersion equation
-
R. SCHUMER, D. A. BENSON, M. M. MEERSCHAERT, AND S. W. WHEATCRAFT, Eulerian derivation of the fractional advection-dispersion equation, J. Contaminant Hydrology, 48(2001), pp. 69-88.
-
(2001)
J. Contaminant Hydrology
, vol.48
, pp. 69-88
-
-
Schumer, R.1
Benson, D.A.2
Meerschaert, M.M.3
Wheatcraft, S.W.4
-
41
-
-
56049105863
-
A sliding mode control for linear fractional systems with input and state delays
-
A. SI-AMMOUR, S. DJENNOUNE, AND M. BETTAYEB, A sliding mode control for linear fractional systems with input and state delays, Commun. Nonlinear Sci. Numer. Simul., 14(2009), pp. 2310-2318.
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, pp. 2310-2318
-
-
Si-Ammour, A.1
Djennoune, S.2
Bettayeb, M.3
-
42
-
-
84867762995
-
Numerical studies for fractionalorder Logistic differential equation with two different delays
-
N. H. SWEILAM, M. M. KHADER, AND A. M. S. MAHDY, Numerical studies for fractionalorder Logistic differential equation with two different delays, J. Appl. Math., 2012(2012), 764894.
-
(2012)
J. Appl. Math.
, vol.2012
, pp. 764894
-
-
Sweilam, N.H.1
Khader, M.M.2
Mahdy, A.M.S.3
-
43
-
-
79960978682
-
Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay
-
Z. WANG, X. HUANG, AND G. SHI, Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay, Comput. Math. Appl., 62(2011), pp. 1531-1539.
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 1531-1539
-
-
Wang, Z.1
Huang, X.2
Shi, G.3
-
44
-
-
84896852909
-
A numerical method for delayed fractional-order differential equations: Based on G-I definition
-
Z. WANG, X. HUANG, AND J. ZHOU, A numerical method for delayed fractional-order differential equations: Based on G-I definition, Appl. Math. Inf. Sci., 7(2013), pp. 525-529.
-
(2013)
Appl. Math. Inf. Sci.
, vol.7
, pp. 525-529
-
-
Wang, Z.1
Huang, X.2
Zhou, J.3
-
46
-
-
84880661301
-
Fractional Sturm-Liouville eigen-problems: Theory and numerical approximations
-
M. ZAYERNOURI AND G. E. KARNIADAKIS, Fractional Sturm-Liouville eigen-problems: Theory and numerical approximations, J. Comput. Phys., 252(2013), pp. 495-517.
-
(2013)
J. Comput. Phys.
, vol.252
, pp. 495-517
-
-
Zayernouri, M.1
Karniadakis, G.E.2
-
47
-
-
84986922240
-
Discontinuous spectral element methods for timeand space-fractional advection equations
-
M. ZAYERNOURI AND G. E. KARNIADAKIS, Discontinuous spectral element methods for timeand space-fractional advection equations, SIAM J. Sci. Comput., 36(2014), pp. B684-B707.
-
(2014)
SIAM J. Sci. Comput.
, vol.36
, pp. B684-B707
-
-
Zayernouri, M.1
Karniadakis, G.E.2
-
48
-
-
84886791142
-
Exponentially accurate spectral and spectral element methods for fractional ODEs
-
M. ZAYERNOURI AND G. E. KARNIADAKIS, Exponentially accurate spectral and spectral element methods for fractional ODEs, J. Comput. Phys., 257(2014), pp. 460-480.
-
(2014)
J. Comput. Phys.
, vol.257
, pp. 460-480
-
-
Zayernouri, M.1
Karniadakis, G.E.2
|