메뉴 건너뛰기




Volumn 36, Issue 6, 2014, Pages B904-B929

Spectral and discontinuous spectral element methods for fractional delay equations

Author keywords

Jacobi polyfractonomials; Pantograph harmonic delay; Petrov Galerkin spectral spectral element methods; Spectral convergence

Indexed keywords

DIFFERENTIAL EQUATIONS; FUNCTIONS; GALERKIN METHODS; POLYNOMIALS; SPECTROSCOPY;

EID: 84919650949     PISSN: 10648275     EISSN: 10957197     Source Type: Journal    
DOI: 10.1137/130935884     Document Type: Article
Times cited : (65)

References (49)
  • 1
    • 65349141740 scopus 로고    scopus 로고
    • A spectral method for pantograph-type delay differential equations and its convergence analysis
    • I. ALI, H. BRUNNER, AND T. TANG, A spectral method for pantograph-type delay differential equations and its convergence analysis, J. Comput. Math., 27(2009), pp. 254-265.
    • (2009) J. Comput. Math. , vol.27 , pp. 254-265
    • Ali, I.1    Brunner, H.2    Tang, T.3
  • 2
    • 84870253876 scopus 로고    scopus 로고
    • The effect of anti-viral drug treatment of human immunodeficiency virus type 1 (HIV-1) described by a fractional order model
    • A. A. M. ARAFA, S. Z. RIDA, AND M. KHALIL, The effect of anti-viral drug treatment of human immunodeficiency virus type 1 (HIV-1) described by a fractional order model, Appl. Math. Model., 37(2013), pp. 2189-2196.
    • (2013) Appl. Math. Model. , vol.37 , pp. 2189-2196
    • Arafa, A.A.M.1    Rida, S.Z.2    Khalil, M.3
  • 3
    • 0014505877 scopus 로고
    • Integral representations for Jacobi polynomials and some applications
    • R. ASKEY AND J. FITCH, Integral representations for Jacobi polynomials and some applications, J. Math. Anal. Appl., 26(1969), pp. 411-437.
    • (1969) J. Math. Anal. Appl. , vol.26 , pp. 411-437
    • Askey, R.1    Fitch, J.2
  • 5
    • 33746355085 scopus 로고    scopus 로고
    • Numerical methods for delay differential equations
    • Oxford University Press, Oxford
    • A. BELLEN AND M. ZENNARO, Numerical Methods for Delay Differential Equations, Numer. Math. Sci. Comput., Oxford University Press, Oxford, 2003.
    • (2003) Numer. Math. Sci. Comput.
    • Bellen, A.1    Zennaro, M.2
  • 6
    • 84919638217 scopus 로고    scopus 로고
    • Existence and uniqueness for semilinear fractional differential equations with infinite delay via resolvent operators
    • M. BELMEKKI, K. MEKHALFI, AND S. K. NTOUYAS, Existence and uniqueness for semilinear fractional differential equations with infinite delay via resolvent operators, J. Fract. Calc. Appl., 4(2013), pp. 267-282.
    • (2013) J. Fract. Calc. Appl. , vol.4 , pp. 267-282
    • Belmekki, M.1    Mekhalfi, K.2    Ntouyas, S.K.3
  • 7
    • 84919644356 scopus 로고    scopus 로고
    • Impulsive differential equations of fractional order with infinite delay
    • M. BENCHOHRA AND Z. BOUTEFAL, Impulsive differential equations of fractional order with infinite delay, J. Fract. Calc. Appl., 4(2013), pp. 209-223.
    • (2013) J. Fract. Calc. Appl. , vol.4 , pp. 209-223
    • Benchohra, M.1    Boutefal, Z.2
  • 8
    • 34848916710 scopus 로고    scopus 로고
    • Existence results for fractional order functional differential equations with infinite delay
    • M. BENCHOHRA, J. HENDERSON, S. K. NTOUYAS, AND A. OUAHAB, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., 338(2008), pp. 1340-1350.
    • (2008) J. Math. Anal. Appl. , vol.338 , pp. 1340-1350
    • Benchohra, M.1    Henderson, J.2    Ntouyas, S.K.3    Ouahab, A.4
  • 9
    • 85162414027 scopus 로고    scopus 로고
    • A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order
    • S. BHALEKAR AND V. DAFTARDAR-GEJJI, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, J. Fract. Calc. Appl., 1(2011), pp. 1-9.
    • (2011) J. Fract. Calc. Appl. , vol.1 , pp. 1-9
    • Bhalekar, S.1    Daftardar-Gejji, V.2
  • 11
    • 77952816520 scopus 로고    scopus 로고
    • Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel
    • Y. CHEN AND T. TANG, Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel, Math. Comp., 79(2010), pp. 147-167.
    • (2010) Math. Comp. , vol.79 , pp. 147-167
    • Chen, Y.1    Tang, T.2
  • 12
    • 1642380503 scopus 로고    scopus 로고
    • A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay
    • R. V. CULSHAW, S. RUAN, AND G. WEBB, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, J. Math. Biol., 46(2003), pp. 425-444.
    • (2003) J. Math. Biol. , vol.46 , pp. 425-444
    • Culshaw, R.V.1    Ruan, S.2    Webb, G.3
  • 13
    • 33748930464 scopus 로고    scopus 로고
    • Stability of N-dimensional linear systems with multiple delays and application to synchronization
    • W. DENG, J. LU, AND CH. LI, Stability of N-dimensional linear systems with multiple delays and application to synchronization, J. Syst. Sci. Complex., 19(2006), pp. 149-156.
    • (2006) J. Syst. Sci. Complex. , vol.19 , pp. 149-156
    • Deng, W.1    Lu, J.2    Li, C.H.3
  • 14
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of fractional differential equations
    • K. DIETHELM AND N. J. FORD, Analysis of fractional differential equations, J. Math. Anal. Appl., 265(2002), pp. 229-248.
    • (2002) J. Math. Anal. Appl. , vol.265 , pp. 229-248
    • Diethelm, K.1    Ford, N.J.2
  • 16
    • 33646262074 scopus 로고    scopus 로고
    • Variational formulation for the stationary fractional advection dispersion equation
    • V. J. ERVIN AND J. P. ROOP, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations, 22(2006), pp. 558-576.
    • (2006) Numer. Methods Partial Differential Equations , vol.22 , pp. 558-576
    • Ervin, V.J.1    Roop, J.P.2
  • 17
    • 33646341532 scopus 로고    scopus 로고
    • Comparison of numerical methods for fractional differential equations
    • N. J. FORD AND J. A. CONNOLLY, Comparison of numerical methods for fractional differential equations, Commun. Pure Appl. Anal., 5(2006), pp. 289-306.
    • (2006) Commun. Pure Appl. Anal. , vol.5 , pp. 289-306
    • Ford, N.J.1    Connolly, J.A.2
  • 19
    • 0003324723 scopus 로고
    • Introduction to functional-differential equations
    • Springer-Verlag, Berlin
    • J. K. HALE AND S. M. VERDUYN LUNEL, Introduction to Functional-Differential Equations, Appl. Math. Sci. 99, Springer-Verlag, Berlin, 1993.
    • (1993) Appl. Math. Sci. , vol.99
    • Hale, J.K.1    Verduyn Lunel, S.M.2
  • 20
    • 84861729690 scopus 로고    scopus 로고
    • Analytical and numerical methods for the stability analysis of linear fractional delay differential equations
    • E. KASLIK AND S. SIVASUNDARAM, Analytical and numerical methods for the stability analysis of linear fractional delay differential equations, J. Comput. Appl. Math., 236(2012), pp. 4027-4041.
    • (2012) J. Comput. Appl. Math. , vol.236 , pp. 4027-4041
    • Kaslik, E.1    Sivasundaram, S.2
  • 21
    • 84966219417 scopus 로고
    • The functional-differential equation y' (x) = ay (λx) + by (x)
    • T. KATO AND J. B. MCLEOD, The functional-differential equation y' (x) = ay (λx) + by (x), Bull. Amer. Math. Soc, 77(1971), pp. 891-937.
    • (1971) Bull. Amer. Math. Soc , vol.77 , pp. 891-937
    • Kato, T.1    McLeod, J.B.2
  • 22
    • 84857583048 scopus 로고    scopus 로고
    • The approximate and exact solutions of the fractionalorder delay differential equations using Legendre pseudospectral method
    • M. M. KHADER AND A. S. HENDY, The approximate and exact solutions of the fractionalorder delay differential equations using Legendre pseudospectral method, Int. J. Pure Appl. Math., 74(2012), pp. 287-297.
    • (2012) Int. J. Pure Appl. Math. , vol.74 , pp. 287-297
    • Khader, M.M.1    Hendy, A.S.2
  • 23
    • 85162517595 scopus 로고    scopus 로고
    • Efficient spectral collocation method for solving multi-term fractional differential equations based on the generalized Laguerre polynomials
    • M. M. KHADER, T. S. EL DANAF, AND A. S. HENDY, Efficient spectral collocation method for solving multi-term fractional differential equations based on the generalized Laguerre polynomials, J. Fract. Calc. Appl., 3(2012), pp. 1-14.
    • (2012) J. Fract. Calc. Appl. , vol.3 , pp. 1-14
    • Khader, M.M.1    El Danaf, T.S.2    Hendy, A.S.3
  • 24
    • 77956684069 scopus 로고    scopus 로고
    • Theory and applications of fractional differential equations
    • Elsevier Science B. V., Amsterdam
    • A. A. KILBAS, H. M. SRIVASTAVA, AND J. J. TRUJILLO, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier Science B. V., Amsterdam, 2006.
    • (2006) North-holland Mathematics Studies , vol.204
    • Kilbas, A.A.1    Srivastava, H.M.2    Trujillo, J.J.3
  • 25
    • 80052263106 scopus 로고    scopus 로고
    • Asymptotic properties of fractional delay differential equations
    • K. KROL, Asymptotic properties of fractional delay differential equations, Appl. Math. Comput., 218(2011), pp. 1515-1532.
    • (2011) Appl. Math. Comput. , vol.218 , pp. 1515-1532
    • Krol, K.1
  • 26
    • 51349139941 scopus 로고    scopus 로고
    • Theory of fractional functional differential equations
    • V. LAKSHMIKANTHAM, Theory of fractional functional differential equations, Nonlinear Anal., 69(2008), pp. 3337-3343.
    • (2008) Nonlinear Anal. , vol.69 , pp. 3337-3343
    • Lakshmikantham, V.1
  • 27
    • 58149145450 scopus 로고    scopus 로고
    • Finite-time stability analysis of fractional order timedelay systems: Gronwall's approach
    • M. P. LAZAREVIĆ AND A. M. SPASIĆ, Finite-time stability analysis of fractional order timedelay systems: Gronwall's approach, Math. Comput. Modelling, 49(2009), pp. 475-481.
    • (2009) Math. Comput. Modelling , vol.49 , pp. 475-481
    • Lazarević, M.P.1    Spasić, A.M.2
  • 28
    • 65049090377 scopus 로고    scopus 로고
    • Numerical algorithm based on Adomian decomposition for fractional differential equations
    • CH. LI AND Y. WANG, Numerical algorithm based on Adomian decomposition for fractional differential equations, Comput. Math. Appl., 57(2009), pp. 1672-1681.
    • (2009) Comput. Math. Appl. , vol.57 , pp. 1672-1681
    • Li, C.H.1    Wang, Y.2
  • 29
    • 77958536189 scopus 로고    scopus 로고
    • A space-time spectral method for the time fractional diffusion equation
    • X. LI AND CH. XU, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47(2009), pp. 2108-2131.
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 2108-2131
    • Li, X.1    Xu, C.H.2
  • 30
    • 34547548712 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the time-fractional diffusion equation
    • Y. LIN AND CH. XU, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225(2007), pp. 1533-1552.
    • (2007) J. Comput. Phys. , vol.225 , pp. 1533-1552
    • Lin, Y.1    Xu, C.H.2
  • 31
    • 0007096742 scopus 로고
    • Fractional diffusive waves in viscoelastic solids
    • ASME, Fairfield, NJ
    • F. MAINARDI, Fractional diffusive waves in viscoelastic solids, in Nonlinear Waves in Solids, ASME, Fairfield, NJ, 1995, pp. 93-97.
    • (1995) Nonlinear Waves in Solids , pp. 93-97
    • Mainardi, F.1
  • 32
    • 84901609528 scopus 로고    scopus 로고
    • Analysis and numerical methods for fractional differential equations with delay
    • M. L. MORGADO, N. J. FORD, AND P. M. LIMA, Analysis and numerical methods for fractional differential equations with delay, J. Comput. Appl. Math., 252(2013), pp. 159-168.
    • (2013) J. Comput. Appl. Math. , vol.252 , pp. 159-168
    • Morgado, M.L.1    Ford, N.J.2    Lima, P.M.3
  • 33
    • 84876136167 scopus 로고    scopus 로고
    • Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations
    • K. MUSTAPHA AND W. MCLEAN, Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations, SIAM J. Numer. Anal., 51(2013), pp. 491-515.
    • (2013) SIAM J. Numer. Anal. , vol.51 , pp. 491-515
    • Mustapha, K.1    McLean, W.2
  • 34
    • 79951512760 scopus 로고    scopus 로고
    • On Legendre polynomial approximation with the VIM or HAM for numerical treatment of nonlinear fractional differential equations
    • Z. ODIBAT, On Legendre polynomial approximation with the VIM or HAM for numerical treatment of nonlinear fractional differential equations, J. Comput. Appl. Math., 235(2011), pp. 2956-2968.
    • (2011) J. Comput. Appl. Math. , vol.235 , pp. 2956-2968
    • Odibat, Z.1
  • 35
    • 84919676120 scopus 로고    scopus 로고
    • Delayed random walks: Investigating the interplay between delay and noise
    • Springer-Verlag, Berlin
    • T. OHIRA AND J. MILTON, Delayed random walks: Investigating the interplay between delay and noise, in Delay Differential Equations, Springer-Verlag, Berlin, 2009, pp. 1-31.
    • (2009) Delay Differential Equations , pp. 1-31
    • Ohira, T.1    Milton, J.2
  • 36
    • 45849155458 scopus 로고    scopus 로고
    • Fractional Langevin model of memory in financial markets
    • S. PICOZZI AND B. J. WEST, Fractional Langevin model of memory in financial markets, Phys. Rev. E (3), 66(2002), 046118.
    • (2002) Phys. Rev. E (3) , vol.66 , pp. 046118
    • Picozzi, S.1    West, B.J.2
  • 37
    • 0342586404 scopus 로고    scopus 로고
    • Numerical solution of ordinary fractional differential equations by the fractional difference method
    • Gordon and Breach, Amsterdam
    • I. PODLUBNY, Numerical solution of ordinary fractional differential equations by the fractional difference method, in Advances in Difference Equations, Gordon and Breach, Amsterdam, 1997, pp. 507-515.
    • (1997) Advances in Difference Equations , pp. 507-515
    • Podlubny, I.1
  • 39
    • 0034275979 scopus 로고    scopus 로고
    • Fractional calculus and continuous-time finance
    • E. SCALAS, R. GORENFLO, AND F. MAINARDI, Fractional calculus and continuous-time finance, Phys. A, 284(2000), pp. 376-384.
    • (2000) Phys. A , vol.284 , pp. 376-384
    • Scalas, E.1    Gorenflo, R.2    Mainardi, F.3
  • 41
    • 56049105863 scopus 로고    scopus 로고
    • A sliding mode control for linear fractional systems with input and state delays
    • A. SI-AMMOUR, S. DJENNOUNE, AND M. BETTAYEB, A sliding mode control for linear fractional systems with input and state delays, Commun. Nonlinear Sci. Numer. Simul., 14(2009), pp. 2310-2318.
    • (2009) Commun. Nonlinear Sci. Numer. Simul. , vol.14 , pp. 2310-2318
    • Si-Ammour, A.1    Djennoune, S.2    Bettayeb, M.3
  • 42
    • 84867762995 scopus 로고    scopus 로고
    • Numerical studies for fractionalorder Logistic differential equation with two different delays
    • N. H. SWEILAM, M. M. KHADER, AND A. M. S. MAHDY, Numerical studies for fractionalorder Logistic differential equation with two different delays, J. Appl. Math., 2012(2012), 764894.
    • (2012) J. Appl. Math. , vol.2012 , pp. 764894
    • Sweilam, N.H.1    Khader, M.M.2    Mahdy, A.M.S.3
  • 43
    • 79960978682 scopus 로고    scopus 로고
    • Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay
    • Z. WANG, X. HUANG, AND G. SHI, Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay, Comput. Math. Appl., 62(2011), pp. 1531-1539.
    • (2011) Comput. Math. Appl. , vol.62 , pp. 1531-1539
    • Wang, Z.1    Huang, X.2    Shi, G.3
  • 44
    • 84896852909 scopus 로고    scopus 로고
    • A numerical method for delayed fractional-order differential equations: Based on G-I definition
    • Z. WANG, X. HUANG, AND J. ZHOU, A numerical method for delayed fractional-order differential equations: Based on G-I definition, Appl. Math. Inf. Sci., 7(2013), pp. 525-529.
    • (2013) Appl. Math. Inf. Sci. , vol.7 , pp. 525-529
    • Wang, Z.1    Huang, X.2    Zhou, J.3
  • 46
    • 84880661301 scopus 로고    scopus 로고
    • Fractional Sturm-Liouville eigen-problems: Theory and numerical approximations
    • M. ZAYERNOURI AND G. E. KARNIADAKIS, Fractional Sturm-Liouville eigen-problems: Theory and numerical approximations, J. Comput. Phys., 252(2013), pp. 495-517.
    • (2013) J. Comput. Phys. , vol.252 , pp. 495-517
    • Zayernouri, M.1    Karniadakis, G.E.2
  • 47
    • 84986922240 scopus 로고    scopus 로고
    • Discontinuous spectral element methods for timeand space-fractional advection equations
    • M. ZAYERNOURI AND G. E. KARNIADAKIS, Discontinuous spectral element methods for timeand space-fractional advection equations, SIAM J. Sci. Comput., 36(2014), pp. B684-B707.
    • (2014) SIAM J. Sci. Comput. , vol.36 , pp. B684-B707
    • Zayernouri, M.1    Karniadakis, G.E.2
  • 48
    • 84886791142 scopus 로고    scopus 로고
    • Exponentially accurate spectral and spectral element methods for fractional ODEs
    • M. ZAYERNOURI AND G. E. KARNIADAKIS, Exponentially accurate spectral and spectral element methods for fractional ODEs, J. Comput. Phys., 257(2014), pp. 460-480.
    • (2014) J. Comput. Phys. , vol.257 , pp. 460-480
    • Zayernouri, M.1    Karniadakis, G.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.