-
5
-
-
41849104190
-
A note on the fractional-order Chua's system
-
I. Petr A note on the fractional-order Chua's system Chaos Solitons Fractals 38 1 2008 140 147
-
(2008)
Chaos Solitons Fractals
, vol.38
, Issue.1
, pp. 140-147
-
-
Petr, I.1
-
6
-
-
12244291039
-
Numerical solutions for systems of fractional differential equations by the decomposition method
-
DOI 10.1016/j.amc.2004.03.014, PII S0096300304001936
-
S. Momani, and K. Al-Khaled Numerical solutions for systems of fractional differential equations by the decomposition method Appl. Math. Comput. 162 3 2005 1351 1365 (Pubitemid 40114500)
-
(2005)
Applied Mathematics and Computation
, vol.162
, Issue.3
, pp. 1351-1365
-
-
Momani, S.1
Al-Khaled, K.2
-
7
-
-
27744514614
-
Non-perturbative analytical solutions of the space- and time-fractional Burgers equations
-
DOI 10.1016/j.chaos.2005.09.002, PII S096007790500843X
-
S. Momani Non-perturbative analytical solutions of the space- and time-fractional Burgers equations Chaos Solitons Fractals 28 4 2006 930 937 (Pubitemid 41607591)
-
(2006)
Chaos, Solitons and Fractals
, vol.28
, Issue.4
, pp. 930-937
-
-
Momani, S.1
-
8
-
-
33744981446
-
Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method
-
DOI 10.1016/j.amc.2005.11.025, PII S0096300305009276
-
S. Momani, and Z. Odibat Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method Appl. Math. Comput. 177 2006 488 494 (Pubitemid 43866876)
-
(2006)
Applied Mathematics and Computation
, vol.177
, Issue.2
, pp. 488-494
-
-
Momani, S.1
Odibat, Z.2
-
9
-
-
33749512364
-
Approximate solutions for boundary value problems of time-fractional wave equation
-
Z. Odibat, and S. Momani Approximate solutions for boundary value problems of time-fractional wave equation Appl. Math. Comput. 181 2006 1351 1358
-
(2006)
Appl. Math. Comput.
, vol.181
, pp. 1351-1358
-
-
Odibat, Z.1
Momani, S.2
-
10
-
-
35348869861
-
Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order
-
DOI 10.1016/j.chaos.2006.06.041, PII S0960077906005972
-
Z. Odibat, and S. Momani Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order Chaos Solitons Fractals 36 1 2008 167 174 (Pubitemid 47576648)
-
(2008)
Chaos, Solitons and Fractals
, vol.36
, Issue.1
, pp. 167-174
-
-
Odibat, Z.1
Momani, S.2
-
11
-
-
34748865972
-
Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations
-
DOI 10.1016/j.camwa.2006.12.037, PII S0898122107002520, Variational Iteration Method for Nonlinear Problems
-
S. Momani, and Z. Odibat Comparison between homotopy perturbation method and the variational iteration method for linear fractional partial differential equations Comput. Math. Appl. 54 78 2007 910 919 (Pubitemid 47488806)
-
(2007)
Computers and Mathematics with Applications
, vol.54
, Issue.7-8
, pp. 910-919
-
-
Momani, S.1
Odibat, Z.2
-
12
-
-
34247395044
-
Homotopy perturbation method for nonlinear partial differential equations of fractional order
-
S. Momani, and Z. Odibat Homotopy perturbation method for nonlinear partial differential equations of fractional order Phys. Lett. A 365 56 2007 345 350
-
(2007)
Phys. Lett. A
, vol.365
, Issue.56
, pp. 345-350
-
-
Momani, S.1
Odibat, Z.2
-
13
-
-
65449158498
-
The multistage homotopy perturbation method: A powerful scheme for handling the Lorenz system
-
M.S. Chowdhury, I. Hashim, and S. Momani The multistage homotopy perturbation method: a powerful scheme for handling the Lorenz system Chaos Solitons Fractals 40 4 2009 1929 1937
-
(2009)
Chaos Solitons Fractals
, vol.40
, Issue.4
, pp. 1929-1937
-
-
Chowdhury, M.S.1
Hashim, I.2
Momani, S.3
-
14
-
-
65349119364
-
Exact solitary solutions for variants of the KdV equations with fractional time derivatives
-
Z. Odibat Exact solitary solutions for variants of the KdV equations with fractional time derivatives Chaos Solitons Fractals 40 3 2009 1264 1270
-
(2009)
Chaos Solitons Fractals
, vol.40
, Issue.3
, pp. 1264-1270
-
-
Odibat, Z.1
-
15
-
-
39149140685
-
Application of generalized differential transform method to multi-order fractional differential equations
-
DOI 10.1016/j.cnsns.2007.02.006, PII S1007570407000329
-
V. Erturk, S. Momani, and Z. Odibat Application of generalized differential transform method to multi-order fractional differential equations Commun. Nonlinear Sci. Numer. Simul. 13 8 2008 1642 1654 (Pubitemid 351250728)
-
(2008)
Communications in Nonlinear Science and Numerical Simulation
, vol.13
, Issue.8
, pp. 1642-1654
-
-
Erturk, V.S.1
Momani, S.2
Odibat, Z.3
-
16
-
-
36549063424
-
A generalized differential transform method for linear partial differential equations of fractional order
-
DOI 10.1016/j.aml.2007.02.022, PII S0893965907001279
-
Z. Odibat, and S. Momani Generalized differential transform method for linear partial differential equations of fractional order Appl. Math. Lett. 21 2 2008 194 199 (Pubitemid 350181314)
-
(2008)
Applied Mathematics Letters
, vol.21
, Issue.2
, pp. 194-199
-
-
Odibat, Z.1
Momani, S.2
-
17
-
-
35349007529
-
Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation
-
S. Momani, Z. Odibat, and V. Erturk Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation Phys. Lett. A 370 56 2007 379 387
-
(2007)
Phys. Lett. A
, vol.370
, Issue.56
, pp. 379-387
-
-
Momani, S.1
Odibat, Z.2
Erturk, V.3
-
18
-
-
47849126401
-
A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized Taylor's formula
-
S. Momani, and Z. Odibat A novel method for nonlinear fractional partial differential equations: combination of DTM and generalized Taylor's formula J. Comput. Appl. Math. 220 12 2008 85 95
-
(2008)
J. Comput. Appl. Math.
, vol.220
, Issue.12
, pp. 85-95
-
-
Momani, S.1
Odibat, Z.2
-
20
-
-
33748425302
-
Numerical comparison of methods for solving linear differential equations of fractional order
-
DOI 10.1016/j.chaos.2005.10.068, PII S0960077905010374
-
S. Momani, and Z. Odibat Numerical comparison of methods for solving linear differential equations of fractional order Chaos Solitons Fractals 31 5 2007 1248 1255 (Pubitemid 44345225)
-
(2007)
Chaos, Solitons and Fractals
, vol.31
, Issue.5
, pp. 1248-1255
-
-
Momani, S.1
Odibat, Z.2
-
21
-
-
34250661428
-
Numerical approach to differential equations of fractional order
-
DOI 10.1016/j.cam.2006.07.015, PII S0377042706004651, Variational Iteration Method-Reality, Potential, and Challenges
-
S. Momani, and Z. Odibat Numerical approach to differential equations of fractional order J. Comput. Appl. Math. 207 1 2007 96 110 (Pubitemid 46935390)
-
(2007)
Journal of Computational and Applied Mathematics
, vol.207
, Issue.1
, pp. 96-110
-
-
Momani, S.1
Odibat, Z.2
-
22
-
-
34548384362
-
Numerical methods for nonlinear partial differential equations of fractional order
-
DOI 10.1016/j.apm.2006.10.025, PII S0307904X06002800
-
Z. Odibat, and S. Momani Numerical methods for solving nonlinear partial differential equations of fractional order Appl. Math. Model. 32 1 2008 28 39 (Pubitemid 47355246)
-
(2008)
Applied Mathematical Modelling
, vol.32
, Issue.1
, pp. 28-39
-
-
Odibat, Z.1
Momani, S.2
-
23
-
-
70350564868
-
The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics
-
Z. Odibat, and S. Momani The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics Comput. Math. Appl. 58 1112 2009 2199 2208
-
(2009)
Comput. Math. Appl.
, vol.58
, Issue.1112
, pp. 2199-2208
-
-
Odibat, Z.1
Momani, S.2
-
24
-
-
64549148828
-
Series solutions of non-linear Riccati differential equations with fractional order
-
J. Cang, Y. Tan, H. Xu, and S.J. Liao Series solutions of non-linear Riccati differential equations with fractional order Chaos Solitons Fractals 40 1 2009 1 9
-
(2009)
Chaos Solitons Fractals
, vol.40
, Issue.1
, pp. 1-9
-
-
Cang, J.1
Tan, Y.2
Xu, H.3
Liao, S.J.4
-
26
-
-
69249202653
-
The homotopy analysis method for handling systems of fractional differential equations
-
M. Zurigat, S. Momani, Z. Odibat, and A. Alawneh The homotopy analysis method for handling systems of fractional differential equations Appl. Math. Model. 34 1 2010 24 35
-
(2010)
Appl. Math. Model.
, vol.34
, Issue.1
, pp. 24-35
-
-
Zurigat, M.1
Momani, S.2
Odibat, Z.3
Alawneh, A.4
-
27
-
-
70350378693
-
A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations
-
Z. Odibat, S. Momani, and H. Xu A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations Appl. Math. Model. 34 3 2010 593 600
-
(2010)
Appl. Math. Model.
, vol.34
, Issue.3
, pp. 593-600
-
-
Odibat, Z.1
Momani, S.2
Xu, H.3
-
28
-
-
84966227123
-
Fractional linear multistep methods for AbelVolterra integral equations of the second kind
-
C. Lubich Fractional linear multistep methods for AbelVolterra integral equations of the second kind Math. Comp. 45 172 1985 463 469
-
(1985)
Math. Comp.
, vol.45
, Issue.172
, pp. 463-469
-
-
Lubich, C.1
-
29
-
-
0036650479
-
A predictor-corrector approach for the numerical solution of fractional differential equations
-
DOI 10.1023/A:1016592219341, Fractional Order Calculus and Its Applications
-
K. Diethelm, N. Ford, and A. Freed A predictor-corrector approach for the numerical solution of fractional differential equations Nonlinear Dynam. 29 2002 3 22 (Pubitemid 34945390)
-
(2002)
Nonlinear Dynamics
, vol.29
, Issue.1-4
, pp. 3-22
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
30
-
-
4043121080
-
Detailed error analysis for a fractional Adams method
-
DOI 10.1023/B:NUMA.0000027736.85078.be
-
K. Diethelm, N. Ford, and A. Freed Detailed error analysis for a fractional Adams method Numer. Algorithms 36 2004 31 52 (Pubitemid 39072748)
-
(2004)
Numerical Algorithms
, vol.36
, Issue.1
, pp. 31-52
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
31
-
-
0032308350
-
Approximate solution of non linear differential equations with convolution product nonlinearities
-
J.H. He Approximate solution of non linear differential equations with convolution product nonlinearities Comput. Methods Appl. Mech. Engrg. 167 1998 69 73
-
(1998)
Comput. Methods Appl. Mech. Engrg.
, vol.167
, pp. 69-73
-
-
He, J.H.1
-
32
-
-
0032307661
-
Approximate analytical solution for seepage flow with fractional derivatives in porous media
-
J.H. He Approximate analytical solution for seepage flow with fractional derivatives in porous media Comput. Methods Appl. Mech. Engrg. 167 1998 57 68
-
(1998)
Comput. Methods Appl. Mech. Engrg.
, vol.167
, pp. 57-68
-
-
He, J.H.1
-
33
-
-
0040184009
-
Variational iteration method for autonomous ordinary differential systems
-
J.H. He Variational iteration method for autonomous ordinary differential systems Appl. Math. Comput. 114 2000 115 123
-
(2000)
Appl. Math. Comput.
, vol.114
, pp. 115-123
-
-
He, J.H.1
-
34
-
-
0041621600
-
Variational principles for some nonlinear partial differential equations with variable coefficients
-
J.H. He Variational principles for some nonlinear partial differential equations with variable coefficients Chaos Solitons Fractals 19 4 2004 847 851
-
(2004)
Chaos Solitons Fractals
, vol.19
, Issue.4
, pp. 847-851
-
-
He, J.H.1
-
35
-
-
34250668369
-
Variational iteration method-some recent results and new interpretations
-
J.H. He Variational iteration method-some recent results and new interpretations J. Comput. Appl. Math. 207 1 2007 3 17
-
(2007)
J. Comput. Appl. Math.
, vol.207
, Issue.1
, pp. 3-17
-
-
He, J.H.1
-
36
-
-
27144467065
-
New applications of variational iteration method
-
DOI 10.1016/j.physd.2005.08.002, PII S0167278905003337
-
M.A. Abdou, and A.A. Soliman New applications of variational iteration method Physica D 211 12 2005 1 8 (Pubitemid 41491773)
-
(2005)
Physica D: Nonlinear Phenomena
, vol.211
, Issue.1-2
, pp. 1-8
-
-
Abdou, M.A.1
Soliman, A.A.2
-
37
-
-
34250650488
-
A comparison between the variational iteration method and Adomian decomposition method
-
A.M. Wazwaz A comparison between the variational iteration method and Adomian decomposition method J. Comput. Appl. Math. 207 1 2007 129 136
-
(2007)
J. Comput. Appl. Math.
, vol.207
, Issue.1
, pp. 129-136
-
-
Wazwaz, A.M.1
-
38
-
-
34250678918
-
Solving nonlinear partial differential equations using the modified variational iteration Pade technique
-
DOI 10.1016/j.cam.2006.07.024, PII S0377042706004638, Variational Iteration Method-Reality, Potential, and Challenges
-
T.A. Abassy, M.A. El-Tawil, and H. El Zoheiry Solving nonlinear partial differential equations using the modified variational iteration Pad technique J. Comput. Appl. Math. 207 1 2007 73 91 (Pubitemid 46935388)
-
(2007)
Journal of Computational and Applied Mathematics
, vol.207
, Issue.1
, pp. 73-91
-
-
Abassy, T.A.1
El-Tawil, M.A.2
El Zoheiry, H.3
-
39
-
-
34250696383
-
On the convergence of He's variational iteration method
-
DOI 10.1016/j.cam.2006.07.017, PII S0377042706004675, Variational Iteration Method-Reality, Potential, and Challenges
-
M. Tatari, and M. Dehghan On the convergence of He's variational iteration method J. Comput. Appl. Math. 207 1 2007 121 128 (Pubitemid 46950910)
-
(2007)
Journal of Computational and Applied Mathematics
, vol.207
, Issue.1
, pp. 121-128
-
-
Tatari, M.1
Dehghan, M.2
-
40
-
-
34748875886
-
The variational iteration method: A powerful scheme for handling linear and nonlinear diffusion equations
-
A.M. Wazwaz The variational iteration method: a powerful scheme for handling linear and nonlinear diffusion equations Comput. Math. Appl. 54 78 2007 933 939
-
(2007)
Comput. Math. Appl.
, vol.54
, Issue.78
, pp. 933-939
-
-
Wazwaz, A.M.1
-
41
-
-
43449126801
-
Reliable approaches of variational iteration method for nonlinear operators
-
DOI 10.1016/j.mcm.2007.09.005, PII S0895717707002944
-
Z. Odibat Reliable approaches of variational iteration method for nonlinear operators Math. Comput. Model. 48 12 2008 222 231 (Pubitemid 351672229)
-
(2008)
Mathematical and Computer Modelling
, vol.48
, Issue.1-2
, pp. 222-231
-
-
Odibat, Z.M.1
-
42
-
-
70350570458
-
Improvement of He's variational iteration method for solving systems of differential equations
-
M. Tatari, and M. Dehghan Improvement of He's variational iteration method for solving systems of differential equations Comput. Math. Appl. 58 1112 2009 2160 2166
-
(2009)
Comput. Math. Appl.
, vol.58
, Issue.1112
, pp. 2160-2166
-
-
Tatari, M.1
Dehghan, M.2
-
43
-
-
77649183650
-
A study on the convergence of variational iteration method
-
Z. Odibat A study on the convergence of variational iteration method Math. Comput. Model. 51 910 2010 1181 1192
-
(2010)
Math. Comput. Model.
, vol.51
, Issue.910
, pp. 1181-1192
-
-
Odibat, Z.1
-
44
-
-
0000615571
-
A kind of approximate solution technique which does not depend upon small parameters: A special example
-
S.J. Liao A kind of approximate solution technique which does not depend upon small parameters: a special example Internat. J. Non-Linear Mech. 30 1995 371 380
-
(1995)
Internat. J. Non-Linear Mech.
, vol.30
, pp. 371-380
-
-
Liao, S.J.1
-
46
-
-
0141961626
-
On the homotopy analysis method for nonlinear problems
-
S.J. Liao On the homotopy analysis method for nonlinear problems Appl. Math. Comput. 147 2004 499 513
-
(2004)
Appl. Math. Comput.
, vol.147
, pp. 499-513
-
-
Liao, S.J.1
-
47
-
-
55549136027
-
Notes on the homotopy analysis method: Some definitions and theorems
-
S.J. Liao Notes on the homotopy analysis method: Some definitions and theorems Commun. Nonlinear Sci. Numer. Simul. 14 4 2009 983 997
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, Issue.4
, pp. 983-997
-
-
Liao, S.J.1
-
48
-
-
33845432502
-
On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder
-
DOI 10.1016/j.physleta.2006.09.060, PII S0375960106014861
-
T. Hayat, and M. Sajid On analytic solution for thin film flow of a forth grade fluid down a vertical cylinder Phys. Lett. A 361 45 2007 316 322 (Pubitemid 44894740)
-
(2007)
Physics Letters, Section A: General, Atomic and Solid State Physics
, vol.361
, Issue.4-5
, pp. 316-322
-
-
Hayat, T.1
Sajid, M.2
-
49
-
-
34347339334
-
Application of homotopy analysis method to fractional KdVBurgersKuramoto equation
-
L. Song, and H.Q. Zhang Application of homotopy analysis method to fractional KdVBurgersKuramoto equation Phys. Lett. A 367 12 2007 88 94
-
(2007)
Phys. Lett. A
, vol.367
, Issue.12
, pp. 88-94
-
-
Song, L.1
Zhang, H.Q.2
-
50
-
-
38649139314
-
Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method
-
DOI 10.1016/j.cej.2007.03.022, PII S1385894707001672
-
S. Abbasbandy Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method Chem. Eng. J. 136 23 2008 144 150 (Pubitemid 351173865)
-
(2008)
Chemical Engineering Journal
, vol.136
, Issue.2-3
, pp. 144-150
-
-
Abbasbandy, S.1
-
51
-
-
63449128519
-
The homotopy analysis method for multiple solutions of nonlinear boundary value problems
-
S. Abbasbandy, E. Magyari, and E. Shivanian The homotopy analysis method for multiple solutions of nonlinear boundary value problems Commun. Nonlinear Sci. Numer. Simul. 14 910 2009 3530 3536
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, Issue.910
, pp. 3530-3536
-
-
Abbasbandy, S.1
Magyari, E.2
Shivanian, E.3
-
53
-
-
61749099595
-
Series solution of nonlinear eigenvalue problems by means of the homotopy analysis method
-
S.J. Liao Series solution of nonlinear eigenvalue problems by means of the homotopy analysis method Nonlinear Anal. RWA 10 4 2009 2455 2470
-
(2009)
Nonlinear Anal. RWA
, vol.10
, Issue.4
, pp. 2455-2470
-
-
Liao, S.J.1
-
54
-
-
56049101374
-
A study of homotopy analysis method for limit cycle of van der Pol equation
-
Y.M. Chen, and J.K. Liu A study of homotopy analysis method for limit cycle of van der Pol equation Commun. Nonlinear Sci. Numer. Simul. 14 5 2009 1816 1821
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, Issue.5
, pp. 1816-1821
-
-
Chen, Y.M.1
Liu, J.K.2
-
57
-
-
33645877651
-
Adomian decomposition method with Chebyshev polynomials
-
M.M. Hosseini Adomian decomposition method with Chebyshev polynomials Appl. Math. Comput. 175 2 2006 1685 1693
-
(2006)
Appl. Math. Comput.
, vol.175
, Issue.2
, pp. 1685-1693
-
-
Hosseini, M.M.1
-
58
-
-
64049093900
-
Adomian decomposition method by Legendre polynomials
-
W.-C. Tien, and C.-K. Chen Adomian decomposition method by Legendre polynomials Chaos Solitons Fractals 39 5 2009 2093 2101
-
(2009)
Chaos Solitons Fractals
, vol.39
, Issue.5
, pp. 2093-2101
-
-
Tien, W.-C.1
Chen, C.-K.2
|