메뉴 건너뛰기




Volumn 218, Issue 5, 2011, Pages 1515-1532

Asymptotic properties of fractional delay differential equations

Author keywords

Asymptotic stability; Delay differential equations; Exact convergence rate; Fractional differential equations; Laplace transform; Linear equations; Polynomial decay

Indexed keywords

ANALYTICAL RESULTS; ASYMPTOTIC PROPERTIES; CONVERGENCE RATES; DELAY DIFFERENTIAL EQUATIONS; FRACTIONAL DELAY; FRACTIONAL DIFFERENTIAL EQUATIONS; INVERSE LAPLACE TRANSFORM; LINEAR FRACTIONAL DIFFERENTIAL EQUATIONS; POLYNOMIAL DECAY; STABLE SOLUTIONS; SUFFICIENT CONDITIONS;

EID: 80052263106     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2011.04.059     Document Type: Article
Times cited : (51)

References (19)
  • 1
    • 33748637597 scopus 로고    scopus 로고
    • On exact rates of decay of solutions of linear systems of Volterra equations with delay
    • DOI 10.1016/j.jmaa.2005.06.103, PII S0022247X05005287
    • J.A.D. Appleby, I. Gyri, and D.W. Reynolds On exact rates of decay of solutions of linear systems of Volterra equations with delay Journal of Mathematical Analysis and Applications 320 1 2006 56 77 (Pubitemid 44382329)
    • (2006) Journal of Mathematical Analysis and Applications , vol.320 , Issue.1 , pp. 56-77
    • Appleby, J.A.D.1    Gyori, I.2    Reynolds, D.W.3
  • 2
    • 0036650867 scopus 로고    scopus 로고
    • Analytical stability bound for a class of delayed fractional-order dynamic systems
    • DOI 10.1023/A:1016591006562, Fractional Order Calculus and Its Applications
    • Y. Chen, and K.L. Moore Analytical stability bound for a class of delayed fractional-order dynamic systems Nonlinear Dynamics 29 2002 191 200 (Pubitemid 34945398)
    • (2002) Nonlinear Dynamics , vol.29 , Issue.1-4 , pp. 191-200
    • Chen, Y.1    Moore, K.L.2
  • 3
    • 33947133956 scopus 로고    scopus 로고
    • Stability analysis of linear fractional differential system with multiple time delays
    • DOI 10.1007/s11071-006-9094-0
    • W. Deng, C. Li, and J. Lü Stability analysis of linear fractional differential system with multiple time delays Nonlinear Dynamics 48 2007 409 416 (Pubitemid 46407957)
    • (2007) Nonlinear Dynamics , vol.48 , Issue.4 , pp. 409-416
    • Deng, W.1    Li, C.2    Lu, J.3
  • 5
    • 3042709180 scopus 로고    scopus 로고
    • Multi-order fractional differential equations and their numerical solution
    • K. Diethelm, and N.J. Ford Multi-order fractional differential equations and their numerical solution Applied Mathematics and Computation 154 2004 621 640
    • (2004) Applied Mathematics and Computation , vol.154 , pp. 621-640
    • Diethelm, K.1    Ford, N.J.2
  • 9
    • 33645135087 scopus 로고    scopus 로고
    • A numerical algorithm for stability testing of fractional delay systems
    • C. Hwang, and Y.C. Cheng A numerical algorithm for stability testing of fractional delay systems Automatica 42 2006 825 831
    • (2006) Automatica , vol.42 , pp. 825-831
    • Hwang, C.1    Cheng, Y.C.2
  • 11
    • 0001840597 scopus 로고
    • On Langevins stochastic differential equation extended by a time delayed term
    • U. Küchler, and B. Mensch On Langevins stochastic differential equation extended by a time delayed term Stochastics and Stochastic Reports 40 1991 123 144
    • (1991) Stochastics and Stochastic Reports , vol.40 , pp. 123-144
    • Küchler, U.1    Mensch, B.2
  • 12
    • 51349139941 scopus 로고    scopus 로고
    • Theory of fractional functional differential equations
    • V. Lakshmikantham Theory of fractional functional differential equations Nonlinear Analysis 69 10 2008 3337 3343
    • (2008) Nonlinear Analysis , vol.69 , Issue.10 , pp. 3337-3343
    • Lakshmikantham, V.1
  • 13
    • 27744589296 scopus 로고    scopus 로고
    • α fractional control of robotic time-delay systems
    • DOI 10.1016/j.mechrescom.2005.08.010, PII S0093641305001102
    • α fractional control of robotic time-delay systems Mechanics Research Communications 33 2 2006 269 279 (Pubitemid 41635461)
    • (2006) Mechanics Research Communications , vol.33 , Issue.2 , pp. 269-279
    • Lazarevic, M.P.1
  • 14
    • 58149145450 scopus 로고    scopus 로고
    • Finite-time stability analysis of fractional order time-delay systems: Gronwall's approach
    • M.P. Lazarević, and A.M. Spasić Finite-time stability analysis of fractional order time-delay systems: Gronwall's approach Mathematical and Computer Modelling 49 3-4 2009 475 481
    • (2009) Mathematical and Computer Modelling , vol.49 , Issue.34 , pp. 475-481
    • Lazarević, M.P.1    Spasić, A.M.2
  • 19
    • 38949212976 scopus 로고    scopus 로고
    • Some results of linear fractional order time-delay system
    • DOI 10.1016/j.amc.2007.07.069, PII S0096300307007898
    • X. Zhang Some results of linear fractional order time-delay system Applied Mathematics and Computation 197 1 2008 407 411 (Pubitemid 351215508)
    • (2008) Applied Mathematics and Computation , vol.197 , Issue.1 , pp. 407-411
    • Zhang, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.