-
1
-
-
0036887936
-
Chaos, fractional kinetics, and anomalous transport
-
Zaslavsky G.M. Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371 (2002) 461-580
-
(2002)
Phys. Rep.
, vol.371
, pp. 461-580
-
-
Zaslavsky, G.M.1
-
2
-
-
65049084831
-
-
World Scientific, Singapore
-
Baleanu D., Diethelm K., Scalas E., and Trujillo J.J. Fractional Calculus Models and Numerical Methods (2009), World Scientific, Singapore
-
(2009)
Fractional Calculus Models and Numerical Methods
-
-
Baleanu, D.1
Diethelm, K.2
Scalas, E.3
Trujillo, J.J.4
-
5
-
-
34247212711
-
Remarks on fractional derivative
-
Li C.P., and Deng W.H. Remarks on fractional derivative. Appl. Math. Comput. 187 (2007) 774-784
-
(2007)
Appl. Math. Comput.
, vol.187
, pp. 774-784
-
-
Li, C.P.1
Deng, W.H.2
-
6
-
-
67349121725
-
-
C.P. Li, X.H. Dao, P. Guo, Fractional derivatives in complex plane. Nonlinear Anal. TMA, 2009, doi:10.1016/j.na.2009.01.021 (in press)
-
C.P. Li, X.H. Dao, P. Guo, Fractional derivatives in complex plane. Nonlinear Anal. TMA, 2009, doi:10.1016/j.na.2009.01.021 (in press)
-
-
-
-
7
-
-
0037081673
-
Analysis of fractional differential equations
-
Diethelm K., and Ford N.J. Analysis of fractional differential equations. J. Math. Anal. Appl. 265 (2002) 229-248
-
(2002)
J. Math. Anal. Appl.
, vol.265
, pp. 229-248
-
-
Diethelm, K.1
Ford, N.J.2
-
8
-
-
0036650479
-
A Predictor-Corrector approach for the numerical solution of fractional differential equations
-
Diethelm K., Ford N.J., and Freed A.D. A Predictor-Corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynam. 29 (2002) 3-22
-
(2002)
Nonlinear Dynam.
, vol.29
, pp. 3-22
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
9
-
-
4043121080
-
Detailed error analysis for a fractional Adams method
-
Diethelm K., Ford N.J., and Freed A.D. Detailed error analysis for a fractional Adams method. Numer. Algorithms 36 (2004) 31-52
-
(2004)
Numer. Algorithms
, vol.36
, pp. 31-52
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
10
-
-
0041185368
-
A review of the decomposition method in applied mathematics
-
Adomian G. A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 135 (1988) 501-544
-
(1988)
J. Math. Anal. Appl.
, vol.135
, pp. 501-544
-
-
Adomian, G.1
-
12
-
-
0000395259
-
Decomposition methods: A new proof of convergence
-
Cherruault Y., and Adomian G. Decomposition methods: A new proof of convergence. Math. Comput. Model. 18 12 (1993) 103-106
-
(1993)
Math. Comput. Model.
, vol.18
, Issue.12
, pp. 103-106
-
-
Cherruault, Y.1
Adomian, G.2
-
13
-
-
0041384356
-
Chaotic dynamics of the fractional Lorenz system
-
034101-1
-
Grigorenko I., and Grigorenko E. Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91 (2003) 034101-1
-
(2003)
Phys. Rev. Lett.
, vol.91
-
-
Grigorenko, I.1
Grigorenko, E.2
-
14
-
-
1842832060
-
Chaos in Chen's system with a fractional order
-
Li C.P., and Peng G.J. Chaos in Chen's system with a fractional order. Chaos Solitons Fractals 22 (2004) 443-450
-
(2004)
Chaos Solitons Fractals
, vol.22
, pp. 443-450
-
-
Li, C.P.1
Peng, G.J.2
-
15
-
-
33847067879
-
Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle?
-
Wang Y.H., and Li C.P. Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle?. Phys. Lett. A 363 (2007) 414-419
-
(2007)
Phys. Lett. A
, vol.363
, pp. 414-419
-
-
Wang, Y.H.1
Li, C.P.2
-
16
-
-
37549047625
-
The evolution of chaotic dynamics for fractional unified system
-
Deng W.H., and Li C.P. The evolution of chaotic dynamics for fractional unified system. Phys. Lett. A 372 (2008) 401-407
-
(2008)
Phys. Lett. A
, vol.372
, pp. 401-407
-
-
Deng, W.H.1
Li, C.P.2
-
17
-
-
65049084387
-
Numerical detection of the lowest "efficient dimensions" for chaotic fractional differential systems
-
Hu T.C., and Wang Y.H. Numerical detection of the lowest "efficient dimensions" for chaotic fractional differential systems. Open Mathe. J. 1 (2008) 11-18
-
(2008)
Open Mathe. J.
, vol.1
, pp. 11-18
-
-
Hu, T.C.1
Wang, Y.H.2
-
18
-
-
65049083515
-
A kind of explicit stable method to solve the Burgers equation
-
Sun J.Q., and Qin M.Z. A kind of explicit stable method to solve the Burgers equation. Math. Numer. Sinica 29 (2007) 67-72
-
(2007)
Math. Numer. Sinica
, vol.29
, pp. 67-72
-
-
Sun, J.Q.1
Qin, M.Z.2
-
19
-
-
24144494623
-
An explicit and numerical solutions of the fractional KdV equation
-
Momani S. An explicit and numerical solutions of the fractional KdV equation. Math Comput Simulation 70 (2005) 110-118
-
(2005)
Math Comput Simulation
, vol.70
, pp. 110-118
-
-
Momani, S.1
|