메뉴 건너뛰기




Volumn 49, Issue 3-4, 2009, Pages 475-481

Finite-time stability analysis of fractional order time-delay systems: Gronwall's approach

Author keywords

Fractional calculus; Stability analysis; Time delay systems

Indexed keywords

DELAY CONTROL SYSTEMS; FUNCTIONS; SYSTEM STABILITY; TIME DELAY;

EID: 58149145450     PISSN: 08957177     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.mcm.2008.09.011     Document Type: Article
Times cited : (307)

References (34)
  • 3
    • 0022010652 scopus 로고
    • Criteria for asymptotic stability of linear time delay systems
    • Mori T. Criteria for asymptotic stability of linear time delay systems. IEEE Trans. Automat. Control, AC 30 (1985) 158-161
    • (1985) IEEE Trans. Automat. Control, AC , vol.30 , pp. 158-161
    • Mori, T.1
  • 4
    • 0022463114 scopus 로고
    • On the stability of time delay systems: New results
    • Hmamed A. On the stability of time delay systems: New results. Internat. J. Control 43 1 (1986) 321-324
    • (1986) Internat. J. Control , vol.43 , Issue.1 , pp. 321-324
    • Hmamed, A.1
  • 5
    • 0029373148 scopus 로고
    • On sufficient conditions for stability independent of delay
    • Chen J., Xu D., and Shafai B. On sufficient conditions for stability independent of delay. IEEE Trans. Automat Control AC 40 9 (1995) 1675-1680
    • (1995) IEEE Trans. Automat Control AC , vol.40 , Issue.9 , pp. 1675-1680
    • Chen, J.1    Xu, D.2    Shafai, B.3
  • 6
    • 0002461104 scopus 로고
    • On the stability of systems defined over finite time interval
    • Weiss L., and Infante F. On the stability of systems defined over finite time interval. Proc. Natl. Acad. Sci. 54 1 (1965) 44-48
    • (1965) Proc. Natl. Acad. Sci. , vol.54 , Issue.1 , pp. 44-48
    • Weiss, L.1    Infante, F.2
  • 7
    • 85047695878 scopus 로고
    • Non-Lyapunov stability analysis of large-scale systems on time-varying sets
    • Grujić Lj.T. Non-Lyapunov stability analysis of large-scale systems on time-varying sets. Internat. J. Control 21 3 (1975) 401-405
    • (1975) Internat. J. Control , vol.21 , Issue.3 , pp. 401-405
    • Grujić, Lj.T.1
  • 8
    • 0012255975 scopus 로고
    • Practical stability with settling time on composite systems
    • Grujić Lj.T. Practical stability with settling time on composite systems. Automatika (YU), T.P. 9 1 (1975)
    • (1975) Automatika (YU), T.P. , vol.9 , Issue.1
    • Grujić, Lj.T.1
  • 9
  • 10
    • 58149155324 scopus 로고    scopus 로고
    • D.Lj Debeljković, M.P. Lazarević, Dj. Koruga, S. Tomašević, On practical stability of time delay system under perturbing forces, in: AMSE 97, Melbourne, Australia, October 29-31, 1997, pp. 447-450
    • D.Lj Debeljković, M.P. Lazarević, Dj. Koruga, S. Tomašević, On practical stability of time delay system under perturbing forces, in: AMSE 97, Melbourne, Australia, October 29-31, 1997, pp. 447-450
  • 11
    • 58149176460 scopus 로고    scopus 로고
    • Lj.D. Debeljković, M.P. Lazarević, S.A. Milinković, M.B. Jovanović, Finite time stability analysis of linear time delay system: Bellman-Gronwall approach, in: IFAC International Workshop Linear Time Delay Systems, Grenoble,France, 1998, pp. 171-176
    • Lj.D. Debeljković, M.P. Lazarević, S.A. Milinković, M.B. Jovanović, Finite time stability analysis of linear time delay system: Bellman-Gronwall approach, in: IFAC International Workshop Linear Time Delay Systems, Grenoble,France, 1998, pp. 171-176
  • 13
    • 58149153612 scopus 로고    scopus 로고
    • Lj.D. Debeljković, M.P. Lazarević, et al. Further results on non-lyapunov stability of the linear nonautonomous systems with delayed state, Journal Facta Uversitatis, Niš, Serbia,Yugoslavia, 2001, vol.3, No 11, pp. 231-241
    • Lj.D. Debeljković, M.P. Lazarević, et al. Further results on non-lyapunov stability of the linear nonautonomous systems with delayed state, Journal Facta Uversitatis, Niš, Serbia,Yugoslavia, 2001, vol.3, No 11, pp. 231-241
  • 14
    • 58149169500 scopus 로고    scopus 로고
    • D. Matignon, Stability result on fractional differential equations with applications to control processing, in: IMACS - SMC Proceeding, July, Lille, France, 1996, pp. 963-968
    • D. Matignon, Stability result on fractional differential equations with applications to control processing, in: IMACS - SMC Proceeding, July, Lille, France, 1996, pp. 963-968
  • 15
    • 58149172564 scopus 로고    scopus 로고
    • D. Matignon, Stability properties for generalized fractional differential systems, ESAIM: Proceedings, 5, December,1998, pp. 145-158
    • D. Matignon, Stability properties for generalized fractional differential systems, ESAIM: Proceedings, 5, December,1998, pp. 145-158
  • 16
    • 58149155328 scopus 로고    scopus 로고
    • B.M. Vinagre, C.A. Monje, A.J. Calder'on, Fractional order systems and fractional order control actions, in: Lecture 3 of the IEEE CDC02 TW#2: Fractional Calculus Applications in Automatic Control and Robotics, 2002
    • B.M. Vinagre, C.A. Monje, A.J. Calder'on, Fractional order systems and fractional order control actions, in: Lecture 3 of the IEEE CDC02 TW#2: Fractional Calculus Applications in Automatic Control and Robotics, 2002
  • 17
    • 33745872964 scopus 로고    scopus 로고
    • Robust stability check of fractional order linear time invariant systems with interval uncertainties
    • Chen Q., Ahn H., and Podlubny I. Robust stability check of fractional order linear time invariant systems with interval uncertainties. Signal Processing 86 (2006) 2611-2618
    • (2006) Signal Processing , vol.86 , pp. 2611-2618
    • Chen, Q.1    Ahn, H.2    Podlubny, I.3
  • 18
    • 0036568205 scopus 로고    scopus 로고
    • Analytical stability bound for delayed second order systems with repeating poles using Lambert function W
    • Chen Y.Q., and Moore K.L. Analytical stability bound for delayed second order systems with repeating poles using Lambert function W. Automatica 38 5 (2002) 891-895
    • (2002) Automatica , vol.38 , Issue.5 , pp. 891-895
    • Chen, Y.Q.1    Moore, K.L.2
  • 19
    • 0036650867 scopus 로고    scopus 로고
    • Analytical stability bound for a class of delayed fractional-order dynamic systems
    • Chen Y.Q., and Moore K.L. Analytical stability bound for a class of delayed fractional-order dynamic systems. Nonlinear Dynam. 29 (2002) 191-200
    • (2002) Nonlinear Dynam. , vol.29 , pp. 191-200
    • Chen, Y.Q.1    Moore, K.L.2
  • 20
    • 0035648796 scopus 로고    scopus 로고
    • Stabilization of fractional exponential systems including delays
    • Bonnet C., and Partington J.R. Stabilization of fractional exponential systems including delays. Kybernetika 37 (2001) 345-353
    • (2001) Kybernetika , vol.37 , pp. 345-353
    • Bonnet, C.1    Partington, J.R.2
  • 21
    • 0036642801 scopus 로고    scopus 로고
    • Analysis of fractional delay systems of retarded and neutral type
    • Bonnet C., and Partington J.R. Analysis of fractional delay systems of retarded and neutral type. Automatica 38 (2002) 1133-1138
    • (2002) Automatica , vol.38 , pp. 1133-1138
    • Bonnet, C.1    Partington, J.R.2
  • 22
    • 0032003029 scopus 로고    scopus 로고
    • On linear systems with a fractional derivation: Introductory theory and examples
    • Hotzel R., and Fliess M. On linear systems with a fractional derivation: Introductory theory and examples. Math. Comput. Simul. 45 (1998) 385-395
    • (1998) Math. Comput. Simul. , vol.45 , pp. 385-395
    • Hotzel, R.1    Fliess, M.2
  • 23
    • 27744589296 scopus 로고    scopus 로고
    • α fractional control of robotic time-delay systems
    • α fractional control of robotic time-delay systems. Mech. Res. Comm. 33 (2006) 269-279
    • (2006) Mech. Res. Comm. , vol.33 , pp. 269-279
    • Lazarević, M.P.1
  • 24
    • 33845882236 scopus 로고    scopus 로고
    • A generalized Gronwall inequality and its application to a fractional differential equation
    • Ye H., Gao J., and Ding Y. A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328 (2007) 1075-1081
    • (2007) J. Math. Anal. Appl. , vol.328 , pp. 1075-1081
    • Ye, H.1    Gao, J.2    Ding, Y.3
  • 27
    • 0030464353 scopus 로고    scopus 로고
    • Fractional relaxation-oscillation and fractional diffusion-wave phenomena
    • Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7 9 (1996) 1461-1477
    • (1996) Chaos Solitons Fractals , vol.7 , Issue.9 , pp. 1461-1477
    • Mainardi, F.1
  • 30
    • 84977255207 scopus 로고
    • Linear models of dissipation whose Q is almost frequency independent
    • Caputo M. Linear models of dissipation whose Q is almost frequency independent. Geophys. J. Royal Astronom. Soc. 13 (1967) 529-539
    • (1967) Geophys. J. Royal Astronom. Soc. , vol.13 , pp. 529-539
    • Caputo, M.1
  • 32
    • 58149174746 scopus 로고    scopus 로고
    • C. Lorenzo, T. Hartley, Initialization,conceptualization,and application, NASA_Tp, 1998-208415, December, 1998
    • C. Lorenzo, T. Hartley, Initialization,conceptualization,and application, NASA_Tp, 1998-208415, December, 1998
  • 34
    • 58149163951 scopus 로고    scopus 로고
    • A.M. Spasić, P.M. Lazarevi'c, Electroviscoelasticity of Liquid-Liquid Interfaces: Fractional-order model (new constitutive models of liquids), in: Lectures in rheology, Department of Mechanics, Faculty of Mathematics, University of Belgrade,Spring, 2004
    • A.M. Spasić, P.M. Lazarevi'c, Electroviscoelasticity of Liquid-Liquid Interfaces: Fractional-order model (new constitutive models of liquids), in: Lectures in rheology, Department of Mechanics, Faculty of Mathematics, University of Belgrade,Spring, 2004


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.