메뉴 건너뛰기




Volumn 5, Issue 2, 2006, Pages 289-307

Comparison of numerical methods for fractional differential equations

Author keywords

Efficiency; Fractional differential equations; Numerical methods

Indexed keywords


EID: 33646341532     PISSN: 15340392     EISSN: 15535258     Source Type: Journal    
DOI: 10.3934/cpaa.2006.5.289     Document Type: Article
Times cited : (62)

References (26)
  • 1
    • 0344774198 scopus 로고    scopus 로고
    • Numerical treatment of differential equations of fractional order
    • L. Blank. Numerical treatment of differential equations of fractional order. Nonlinear World, 4:473-490, 1997.
    • (1997) Nonlinear World , vol.4 , pp. 473-490
    • Blank, L.1
  • 2
    • 0031171514 scopus 로고    scopus 로고
    • Analytical and numerical treatment of a fractional integro-differential equation of Volterra type
    • L. Boyadjiev, S. L. Kalla, and H. G. Khajah. Analytical and numerical treatment of a fractional integro-differential equation of Volterra type. Math. Comput. Modelling, 25:1-9, 1997.
    • (1997) Math. Comput. Modelling , vol.25 , pp. 1-9
    • Boyadjiev, L.1    Kalla, S.L.2    Khajah, H.G.3
  • 4
    • 84977255207 scopus 로고
    • Linear models of dissipation whose (q) is almost frequency independent-2
    • M. Caputo. Linear models of dissipation whose (q) is almost frequency independent-2. Geophys. J. R. Astr. Soc., 13:529-539, 1967.
    • (1967) Geophys. J. R. Astr. Soc. , vol.13 , pp. 529-539
    • Caputo, M.1
  • 7
    • 0001618393 scopus 로고    scopus 로고
    • An algorithm for the numerical solution of differential equations of fractional order
    • K. Diethelm. An algorithm for the numerical solution of differential equations of fractional order. Electronic Transactions on Numerical Analysis, 5:1-6, 1997.
    • (1997) Electronic Transactions on Numerical Analysis , vol.5 , pp. 1-6
    • Diethelm, K.1
  • 8
    • 0031477557 scopus 로고    scopus 로고
    • Generalized compound quadrature formula for finite-part integrals
    • K. Diethelm. Generalized compound quadrature formula for finite-part integrals. Journal of Numerical Analysis, 17:479-493, 1997.
    • (1997) Journal of Numerical Analysis , vol.17 , pp. 479-493
    • Diethelm, K.1
  • 9
    • 26444438049 scopus 로고    scopus 로고
    • Pitfalls in fast numerical solvers for fractional differential equations
    • K. Diethelm, J. M. Ford, N. J. Ford, and M. Weilbeer. Pitfalls in fast numerical solvers for fractional differential equations. J. Comput. Appl. Math., 186:482-503, 2005.
    • (2005) J. Comput. Appl. Math. , vol.186 , pp. 482-503
    • Diethelm, K.1    Ford, J.M.2    Ford, N.J.3    Weilbeer, M.4
  • 11
    • 0036650479 scopus 로고    scopus 로고
    • A predictor-corrector approach for the numerical solution of fractional differential equations
    • K. Diethelm, N. J. Ford, and A. D. Freed. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics, 29:3-22, 2002.
    • (2002) Nonlinear Dynamics , vol.29 , pp. 3-22
    • Diethelm, K.1    Ford, N.J.2    Freed, A.D.3
  • 12
    • 4043121080 scopus 로고    scopus 로고
    • Detailed error analysis for a fractional Adams method
    • K. Diethelm, N. J. Ford, and A. D. Freed. Detailed error analysis for a fractional Adams method. Numerical Algorithms, 36:31-52, 2004.
    • (2004) Numerical Algorithms , vol.36 , pp. 31-52
    • Diethelm, K.1    Ford, N.J.2    Freed, A.D.3
  • 14
    • 0345725623 scopus 로고    scopus 로고
    • Numerical solution of linear multi-term differential equations of fractional order
    • TU Braunschweig
    • K. Diethelm and Y. Luchko. Numerical solution of linear multi-term differential equations of fractional order. Technical report, TU Braunschweig, 2001.
    • (2001) Technical Report
    • Diethelm, K.1    Luchko, Y.2
  • 16
    • 0344082100 scopus 로고    scopus 로고
    • Adaptive discretization of an integro-differential equation with a weakly singular convolution kernel
    • M. Enelund K. Adolfsson and S. Larsson. Adaptive discretization of an integro-differential equation with a weakly singular convolution kernel. Comp. Meth. Appl. Mech. Engrg., 192:5285-5304, 2003.
    • (2003) Comp. Meth. Appl. Mech. Engrg. , vol.192 , pp. 5285-5304
    • Enelund, M.1    Adolfsson, K.2    Larsson, S.3
  • 17
    • 84947559845 scopus 로고    scopus 로고
    • A numerical method for solution of ordinary differential equations of fractional order
    • Springer Lecture Notes Comput. Sci.
    • J. Leszczynski and M. Ciesielski. A numerical method for solution of ordinary differential equations of fractional order. In Parallel processing and applied mathematics, pages 695-702. Springer Lecture Notes Comput. Sci. 2328, 2002.
    • (2002) Parallel Processing and Applied Mathematics , vol.2328 , pp. 695-702
    • Leszczynski, J.1    Ciesielski, M.2
  • 18
    • 34250094006 scopus 로고
    • Convolution quadrature and discretized operational calculus 2
    • C. Lubich. Convolution quadrature and discretized operational calculus 2. Numerical Mathematics, 52:413-425, 1988.
    • (1988) Numerical Mathematics , vol.52 , pp. 413-425
    • Lubich, C.1
  • 19
    • 0003548431 scopus 로고    scopus 로고
    • The initial value problem for some fractional differential equations with the Caputo derivatives
    • University of Berlin
    • Y. Luchko and R. Gorenflo. The initial value problem for some fractional differential equations with the Caputo derivatives. Technical report, University of Berlin, 1997.
    • (1997) Technical Report
    • Luchko, Y.1    Gorenflo, R.2
  • 20
    • 17844395815 scopus 로고    scopus 로고
    • An algorithm for numerical solutions of fractional order differential equations
    • S. Momani and S. Hadid. An algorithm for numerical solutions of fractional order differential equations. J. Fractional Calculus, 15:61-66, 1999.
    • (1999) J. Fractional Calculus , vol.15 , pp. 61-66
    • Momani, S.1    Hadid, S.2
  • 21
    • 0342586404 scopus 로고
    • Numerical solution of ordinary fractional differential equations by the fractional difference method
    • Gordon and Breach Science Publishers
    • I. Podlubny. Numerical solution of ordinary fractional differential equations by the fractional difference method. In Proceedings of the Second International Conference on Difference Equations. Gordon and Breach Science Publishers, 1995.
    • (1995) Proceedings of the Second International Conference on Difference Equations
    • Podlubny, I.1
  • 23
    • 0242354999 scopus 로고    scopus 로고
    • Geometric and physical interpretation of fractional integration and fractional differentiation
    • I. Podlubny. Geometric and physical interpretation of fractional integration and fractional differentiation. Fractional Calculus and Applied Analysis, 5:367-386, 2002.
    • (2002) Fractional Calculus and Applied Analysis , vol.5 , pp. 367-386
    • Podlubny, I.1
  • 24
    • 0004408713 scopus 로고
    • Superconvergence of numerical solutions to weakly singular volterra integro-differential equations
    • T. Tang. Superconvergence of numerical solutions to weakly singular volterra integro-differential equations. Numer. Math., 61:373-382, 1992.
    • (1992) Numer. Math. , vol.61 , pp. 373-382
    • Tang, T.1
  • 26
    • 0042026660 scopus 로고    scopus 로고
    • A numerical method for fractional integral with applications
    • Z. Zhu, G. Li, and C. Cheng. A numerical method for fractional integral with applications. Appl Math. Mech. Eng. Ed., 24:373-384, 2003.
    • (2003) Appl Math. Mech. Eng. Ed. , vol.24 , pp. 373-384
    • Zhu, Z.1    Li, G.2    Cheng, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.