메뉴 건너뛰기




Volumn 252, Issue , 2013, Pages 159-168

Analysis and numerical methods for fractional differential equations with delay

Author keywords

Delay differential equations; Fractional differential equations; Initial value problems; Method of steps; Mittag Leffler functions

Indexed keywords

DIFFERENTIAL EQUATIONS; INITIAL VALUE PROBLEMS;

EID: 84901609528     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2012.06.034     Document Type: Article
Times cited : (139)

References (15)
  • 1
    • 51349139941 scopus 로고    scopus 로고
    • Theory of fractional functional differential equations
    • V. Lakshmikantham Theory of fractional functional differential equations J. Nonlinear Sci. 69 2008 3337 3343
    • (2008) J. Nonlinear Sci. , vol.69 , pp. 3337-3343
    • Lakshmikantham, V.1
  • 2
    • 67650340367 scopus 로고    scopus 로고
    • Existence of positive solutions of nonlinear fractional delay differential equations
    • C. Liao, and H. Ye Existence of positive solutions of nonlinear fractional delay differential equations Positivity 13 2009 601 609
    • (2009) Positivity , vol.13 , pp. 601-609
    • Liao, C.1    Ye, H.2
  • 3
    • 34247643955 scopus 로고    scopus 로고
    • The existence of a positive solution of [ x (t) - X (0) ] = x (t) f (t, xt)
    • H. Ye, Y. Ding, and J. Gao The existence of a positive solution of [ x (t) - x (0) ] = x (t) f (t, xt) Positivity 11 2007 341 350
    • (2007) Positivity , vol.11 , pp. 341-350
    • Ye, H.1    Ding, Y.2    Gao, J.3
  • 4
    • 0036650867 scopus 로고    scopus 로고
    • Analytical stability bound for a class of delayed fractional-order dynamic systems
    • Y. Chen, and K.L. Moore Analytical stability bound for a class of delayed fractional-order dynamic systems Nonlinear Dynam. 29 2002 191 200
    • (2002) Nonlinear Dynam. , vol.29 , pp. 191-200
    • Chen, Y.1    Moore, K.L.2
  • 5
    • 58149145450 scopus 로고    scopus 로고
    • Finite-time stability analysis of fractional order time-delay systems: Gronwall's approach
    • Mihailo P. Lazarević, and Aleksandar M. Spasić Finite-time stability analysis of fractional order time-delay systems: Gronwall's approach Math. Comput. Modelling 49 2009 475 481
    • (2009) Math. Comput. Modelling , vol.49 , pp. 475-481
    • Lazarević, M.P.1    Spasić, A.M.2
  • 6
    • 80052263106 scopus 로고    scopus 로고
    • Asymptotic properties of fractional delay differential equations
    • K. Krol Asymptotic properties of fractional delay differential equations Appl. Math. Comput. 218 5 2011 1515 1532
    • (2011) Appl. Math. Comput. , vol.218 , Issue.5 , pp. 1515-1532
    • Krol, K.1
  • 7
    • 33947133956 scopus 로고    scopus 로고
    • Stability analysis of linear fractional differential system with multiple time delays
    • W. Deng, C. Li, and J. Lu Stability analysis of linear fractional differential system with multiple time delays Nonlinear Dynam. 48 2007 409 416
    • (2007) Nonlinear Dynam. , vol.48 , pp. 409-416
    • Deng, W.1    Li, C.2    Lu, J.3
  • 12
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of fractional differential equations
    • K. Diethelm, and N.J. Ford Analysis of fractional differential equations J. Math. Anal. Appl. 265 2002 229 248
    • (2002) J. Math. Anal. Appl. , vol.265 , pp. 229-248
    • Diethelm, K.1    Ford, N.J.2
  • 14
    • 0001618393 scopus 로고    scopus 로고
    • An algorithm for the numerical solution of differential equations of fractional order
    • K. Diethelm An algorithm for the numerical solution of differential equations of fractional order Electron. Trans. Numer. Anal. 5 1997 1 6
    • (1997) Electron. Trans. Numer. Anal. , vol.5 , pp. 1-6
    • Diethelm, K.1
  • 15
    • 33646341532 scopus 로고    scopus 로고
    • Comparison of numerical methods for fractional differential equations
    • N.J. Ford, and J.A. Connolly Comparison of numerical methods for fractional differential equations Commun. Pure Appl. Anal. 5 2 2006 289 307
    • (2006) Commun. Pure Appl. Anal. , vol.5 , Issue.2 , pp. 289-307
    • Ford, N.J.1    Connolly, J.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.