-
1
-
-
0000078998
-
From continuous time random walks to the fractional Fokker-Planck equation
-
E. Barkai, R. Metzler, and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61 (2000), pp. 132-138.
-
(2000)
Phys. Rev. e
, vol.61
, pp. 132-138
-
-
Barkai, E.1
Metzler, R.2
Klafter, J.3
-
2
-
-
0034032484
-
Application of a fractional advection-dispersion equation
-
D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resources Res., 36 (2000), pp. 1403-1412.
-
(2000)
Water Resources Res.
, vol.36
, pp. 1403-1412
-
-
Benson, D.A.1
Wheatcraft, S.W.2
Meerschaert, M.M.3
-
3
-
-
0003369375
-
Numerical treatment of differential equations of fractional order
-
University of Manchester, UK
-
L. Blank, Numerical Treatment of Differential Equations of Fractional Order, Manchester Centre for Computational Mathematics, University of Manchester, UK, 1996.
-
(1996)
Manchester Centre for Computational Mathematics
-
-
Blank, L.1
-
4
-
-
0040307478
-
Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications
-
J. P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), pp. 127-293.
-
(1990)
Phys. Rep.
, vol.195
, pp. 127-293
-
-
Bouchaud, J.P.1
Georges, A.2
-
5
-
-
84916132305
-
Resonant oscillations in closed tubes
-
W. Chester, Resonant oscillations in closed tubes, J. Fluid Mech, 18 (1964), pp. 44-64.
-
(1964)
J. Fluid Mech
, vol.18
, pp. 44-64
-
-
Chester, W.1
-
6
-
-
0037081673
-
Analysis of fractional differential equations
-
K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), pp. 229-248.
-
(2002)
J. Math. Anal. Appl.
, vol.265
, pp. 229-248
-
-
Diethelm, K.1
Ford, N.J.2
-
7
-
-
4043121080
-
Detailed error analysis for a fractional Adams method
-
K. Diethelm, N. J. Ford, and A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), pp. 31-52.
-
(2004)
Numer. Algorithms
, vol.36
, pp. 31-52
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
8
-
-
0036650850
-
Time fractional diffusion: A discrete random walk approach
-
R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, Time fractional diffusion: A discrete random walk approach, Nonlinear Dynam., 29 (2002), pp. 129-143.
-
(2002)
Nonlinear Dynam.
, vol.29
, pp. 129-143
-
-
Gorenflo, R.1
Mainardi, F.2
Moretti, D.3
Paradisi, P.4
-
9
-
-
0003753516
-
-
Wiley, New York
-
B. Gustafsson, H. O. Kreiss, and J. Oliger, Time Dependent Problems and Difference Methods, Wiley, New York, 1995.
-
(1995)
Time Dependent Problems and Difference Methods
-
-
Gustafsson, B.1
Kreiss, H.O.2
Oliger, J.3
-
10
-
-
0343526808
-
Fractional reaction-diffusion
-
B. Henry and S. Wearne, Fractional reaction-diffusion, Phys. A, 276 (2000), pp. 448-455.
-
(2000)
Phys. a
, vol.276
, pp. 448-455
-
-
Henry, B.1
Wearne, S.2
-
11
-
-
51349168220
-
Spectral methods for time-dependent problems
-
Cambridge University Press, Cambridge, UK
-
J. S. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral Methods for Time-Dependent Problems, Cambridge Monogr. Appl. Comput. Math. 21, Cambridge University Press, Cambridge, UK, 2007.
-
(2007)
Cambridge Monogr. Appl. Comput. Math. 21
-
-
Hesthaven, J.S.1
Gottlieb, S.2
Gottlieb, D.3
-
13
-
-
0000371714
-
Propagation of simple non-linear waves in gas filled tubes with friction
-
J. J. Keller, Propagation of simple non-linear waves in gas filled tubes with friction, Z.Angew. Math. Phys., 32 (1981), pp. 170-181.
-
(1981)
Z.Angew. Math. Phys.
, vol.32
, pp. 170-181
-
-
Keller, J.J.1
-
14
-
-
78651444144
-
On the numerical solutions for the fractional diffusion equation
-
M. M. Khader, On the numerical solutions for the fractional diffusion equation, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), pp. 2535-2542.
-
(2011)
Commun. Nonlinear Sci. Numer. Simul.
, vol.16
, pp. 2535-2542
-
-
Khader, M.M.1
-
15
-
-
84857583048
-
The approximate and exact solutions of the fractional-order delay differential equations using Legendre pseudospectral method
-
M. M. Khader and A. S. Hendy, The approximate and exact solutions of the fractional-order delay differential equations using Legendre pseudospectral method, Inter. J. Pure Appl. Math., 74 (2012), pp. 287-297.
-
(2012)
Inter. J. Pure Appl. Math.
, vol.74
, pp. 287-297
-
-
Khader, M.M.1
Hendy, A.S.2
-
16
-
-
84889299911
-
-
Wiley-VCH, Weinheim, Germany
-
R. Klages, G. Radons, and I. M. Sokolov, Anomalous Transport: Foundations and Applications, Wiley-VCH, Weinheim, Germany, 2008.
-
(2008)
Anomalous Transport: Foundations and Applications
-
-
Klages, R.1
Radons, G.2
Sokolov, I.M.3
-
17
-
-
17144427014
-
The accuracy and stability of an implicit solution method for the fractional diffusion equation
-
T. Langlands and B. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205 (2005), pp. 719-736.
-
(2005)
J. Comput. Phys.
, vol.205
, pp. 719-736
-
-
Langlands, T.1
Henry, B.2
-
18
-
-
0003733595
-
Finite volume methods for hyperbolic problems
-
Cambridge University Press, Cambridge, UK
-
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Appl. Math. 31, Cambridge University Press, Cambridge, UK, 2002.
-
(2002)
Cambridge Texts in Appl. Math. 31
-
-
Leveque, R.J.1
-
19
-
-
77958536189
-
A space-time spectral method for the time fractional diffusion equation
-
X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), pp. 2108-2131.
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 2108-2131
-
-
Li, X.1
Xu, C.2
-
20
-
-
77954143774
-
Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation
-
X. Li and C. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys., 8 (2010), pp. 1016-1051.
-
(2010)
Commun. Comput. Phys.
, vol.8
, pp. 1016-1051
-
-
Li, X.1
Xu, C.2
-
21
-
-
34547548712
-
Finite difference/spectral approximations for the time-fractional diffusion equation
-
Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), pp. 1533-1552.
-
(2007)
J. Comput. Phys.
, vol.225
, pp. 1533-1552
-
-
Lin, Y.1
Xu, C.2
-
22
-
-
84871790575
-
Numerical methods for solving the multi-term time-fractional wave-diffusion equation
-
F. Liu, M. M. Meerschaert, R. J. McGough, P. Zhuang, and Q. Liu, Numerical methods for solving the multi-term time-fractional wave-diffusion equation, Fract. Calc. Appl. Anal., 16 (2013), pp. 9-25.
-
(2013)
Fract. Calc. Appl. Anal.
, vol.16
, pp. 9-25
-
-
Liu, F.1
Meerschaert, M.M.2
McGough, R.J.3
Zhuang, P.4
Liu, Q.5
-
23
-
-
0000449295
-
On the stability of linear multistep methods for Volterra convolution equations
-
C. Lubich, On the stability of linear multistep methods for Volterra convolution equations, IMA J. Numer. Anal., 3 (1983), pp. 439-465.
-
(1983)
IMA J. Numer. Anal.
, vol.3
, pp. 439-465
-
-
Lubich, C.1
-
24
-
-
0000717432
-
Discretized fractional calculus
-
C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal., 17 (1986), pp. 704-719.
-
(1986)
SIAM J. Math. Anal.
, vol.17
, pp. 704-719
-
-
Lubich, C.1
-
27
-
-
0002641421
-
The random walk's guide to anomalous diffusion: A fractional dynamics approach
-
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), pp. 1-77.
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
29
-
-
0001754759
-
A numerical method for a partial integro-differential equation
-
J. M. Sanz-Serna, A numerical method for a partial integro-differential equation, SIAM J. Numer. Anal., 25 (1988), pp. 319-327.
-
(1988)
SIAM J. Numer. Anal.
, vol.25
, pp. 319-327
-
-
Sanz-Serna, J.M.1
-
30
-
-
0026135818
-
Burgers equation with a fractional derivative: Hereditary effects on nonlinear acoustic waves
-
N. Sugimoto, Burgers equation with a fractional derivative: Hereditary effects on nonlinear acoustic waves, J. Fluid Mech., 225 (1991), pp. 631-653.
-
(1991)
J. Fluid Mech.
, vol.225
, pp. 631-653
-
-
Sugimoto, N.1
-
31
-
-
0022130907
-
Generalized Burgers' equation for nonlinear viscoelastic waves
-
N. Sugimoto and T. Kakutani, Generalized Burgers' equation for nonlinear viscoelastic waves, Wave Motion, 7 (1985), pp. 447-458.
-
(1985)
Wave Motion
, vol.7
, pp. 447-458
-
-
Sugimoto, N.1
Kakutani, T.2
-
32
-
-
30744474991
-
A fully discrete difference scheme for a diffusion-wave system
-
Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), pp. 193-209.
-
(2006)
Appl. Numer. Math.
, vol.56
, pp. 193-209
-
-
Sun, Z.1
Wu, X.2
-
33
-
-
84886782096
-
Fractional Sturm-Liouville eigen-problems: Theory and numerical approximations
-
M. Zayernouri and G. E. Karniadakis, Fractional Sturm-Liouville eigen-problems: Theory and numerical approximations, J. Comput. Phys., 47 (2013), pp. 2108-2131.
-
(2013)
J. Comput. Phys.
, vol.47
, pp. 2108-2131
-
-
Zayernouri, M.1
Karniadakis, G.E.2
-
34
-
-
84886791142
-
Exponentially accurate spectral and spectral element methods for fractional ODEs
-
M. Zayernouri and G. E. Karniadakis, Exponentially accurate spectral and spectral element methods for fractional ODEs, J. Comput. Phys., 257 (2014), pp. 460-480.
-
(2014)
J. Comput. Phys.
, vol.257
, pp. 460-480
-
-
Zayernouri, M.1
Karniadakis, G.E.2
-
35
-
-
85122473196
-
-
Butterworth-Heinemann, London
-
O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Butterworth-Heinemann, London, 2005.
-
(2005)
The Finite Element Method: Its Basis and Fundamentals
-
-
Zienkiewicz, O.C.1
Taylor, R.L.2
Zhu, J.Z.3
|