메뉴 건너뛰기




Volumn 51, Issue 1, 2012, Pages 561-566

Artificial neural network modeling of surface tension for pure organic compounds

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK MODELING; AVERAGE ABSOLUTE DEVIATION PERCENTAGES; DATA POINTS; EFFECTIVE PARAMETERS; EXPERIMENTAL DATA; HIDDEN LAYERS; LIQUID MATERIALS; LOOK UP TABLE; MULTI-LAYER PERCEPTRON NETWORKS;

EID: 84855774694     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie2017459     Document Type: Article
Times cited : (58)

References (23)
  • 3
    • 0002314930 scopus 로고
    • Relation between surface tension and density
    • Macleod, D. B. Relation between surface tension and density Trans. Faraday Soc. 1923, 19, 38
    • (1923) Trans. Faraday Soc. , vol.19 , pp. 38
    • MacLeod, D.B.1
  • 4
    • 37049173354 scopus 로고
    • The Variation of surface tension with temperature and some related functions
    • Sugden, S. The Variation of surface tension with temperature and some related functions J. Chem. Soc. 1924, 125, 32
    • (1924) J. Chem. Soc. , vol.125 , pp. 32
    • Sugden, S.1
  • 5
    • 0030148895 scopus 로고    scopus 로고
    • Surface tension prediction for pure liquids
    • Escobedo, J.; Mansoori, G. A. Surface tension prediction for pure liquids AIChE J. 1996, 42, 1425
    • (1996) AIChE J. , vol.42 , pp. 1425
    • Escobedo, J.1    Mansoori, G.A.2
  • 6
    • 0342908856 scopus 로고
    • Prediction of surface tension of organic liquids
    • Kavun, S. M.; Chalykh, A. E.; Palyulin, V. A. Prediction of surface tension of organic liquids Colloid J. 1995, 57, 767
    • (1995) Colloid J. , vol.57 , pp. 767
    • Kavun, S.M.1    Chalykh, A.E.2    Palyulin, V.A.3
  • 7
    • 84855790822 scopus 로고    scopus 로고
    • Prediction of surface tension of organic liquids using artificial neural networks
    • Kumar, D.; Gupta, S.; Basu, S. Prediction of surface tension of organic liquids using artificial neural networks Indian Chem. Eng. 2005, 47, 219
    • (2005) Indian Chem. Eng. , vol.47 , pp. 219
    • Kumar, D.1    Gupta, S.2    Basu, S.3
  • 8
    • 34247468985 scopus 로고    scopus 로고
    • Gradient theory modeling of surface tension for pure fluids and binary mixtures
    • Lin, H.; Duan, Y. Y.; Min, Q. Gradient theory modeling of surface tension for pure fluids and binary mixtures Fluid Phase Equilib. 2007, 254, 75
    • (2007) Fluid Phase Equilib. , vol.254 , pp. 75
    • Lin, H.1    Duan, Y.Y.2    Min, Q.3
  • 9
    • 0035659469 scopus 로고    scopus 로고
    • Prediction of surface tension for pure non-polar fluids based on density functional theory
    • Fu, D.; Lu, J. F.; Liu, J. C.; Li, Y. G. Prediction of surface tension for pure non-polar fluids based on density functional theory Chem. Eng. Sci. 2001, 56, 6989
    • (2001) Chem. Eng. Sci. , vol.56 , pp. 6989
    • Fu, D.1    Lu, J.F.2    Liu, J.C.3    Li, Y.G.4
  • 10
    • 17344391525 scopus 로고    scopus 로고
    • Surface tension of isomers of pure hydrocarbons: A method for estimation and prediction
    • Romero-Martínez, A.; Trejo, A.; Murrieta-Guevara, F. Surface tension of isomers of pure hydrocarbons: a method for estimation and prediction Fluid Phase Equilib. 2000, 171, 1
    • (2000) Fluid Phase Equilib. , vol.171 , pp. 1
    • Romero-Martínez, A.1    Trejo, A.2    Murrieta-Guevara, F.3
  • 11
    • 84962476960 scopus 로고    scopus 로고
    • Predicting Physical-Chemical Properties of Compounds from Molecular Structures by Recursive Neural Networks
    • Bernazzani, L.; Duce, C.; Micheli, A.; Mollica, V.; Sperduti, A.; Starita, A.; Tine, M. R. Predicting Physical-Chemical Properties of Compounds from Molecular Structures by Recursive Neural Networks J. Chem. Inf. Model. 2006, 46, 2030
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 2030
    • Bernazzani, L.1    Duce, C.2    Micheli, A.3    Mollica, V.4    Sperduti, A.5    Starita, A.6    Tine, M.R.7
  • 12
    • 0028387642 scopus 로고
    • Neural Networks: Applications in Industry, Business and Science
    • Widrow, B; Rumelhart, D. E.; Lehr, M. A. Neural Networks: Applications in Industry, Business and Science Commun. ACM 1994, 37, 93
    • (1994) Commun. ACM , vol.37 , pp. 93
    • Widrow, B.1    Rumelhart, D.E.2    Lehr, M.A.3
  • 13
    • 80052343768 scopus 로고    scopus 로고
    • Centrifugal Pump-Based Predictive Models for Kraft Black Liquor Viscosity: An Artificial Neural Network Approach
    • Alabi, S. B.; Williamson, C. J. Centrifugal Pump-Based Predictive Models for Kraft Black Liquor Viscosity: An Artificial Neural Network Approach Ind. Eng. Chem. Res. 2011, 50, 10320
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 10320
    • Alabi, S.B.1    Williamson, C.J.2
  • 14
    • 80052379036 scopus 로고    scopus 로고
    • Liquid-Liquid Equilibrium Calculation for Ternary Aqueous Mixtures of Ethanol and Acetic Acid with 2-Ethyl-1-hexanol Using the GMDH-Type Neural Network
    • Ghanadzadeh, H.; Fallahi, S.; Ganji, M. Liquid-Liquid Equilibrium Calculation for Ternary Aqueous Mixtures of Ethanol and Acetic Acid with 2-Ethyl-1-hexanol Using the GMDH-Type Neural Network Ind. Eng. Chem. Res. 2011, 50, 10158
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 10158
    • Ghanadzadeh, H.1    Fallahi, S.2    Ganji, M.3
  • 15
    • 79956123751 scopus 로고    scopus 로고
    • Representation and Prediction of Molecular Diffusivity of Nonelectrolyte Organic Compounds in Water at Infinite Dilution Using the Artificial Neural Network-Group Contribution Method
    • Gharagheizi, F.; Eslamimanesh, A.; Mohammadi, A. H.; Richon, D. Representation and Prediction of Molecular Diffusivity of Nonelectrolyte Organic Compounds in Water at Infinite Dilution Using the Artificial Neural Network-Group Contribution Method J. Chem. Eng. Data 2011, 56, 1741
    • (2011) J. Chem. Eng. Data , vol.56 , pp. 1741
    • Gharagheizi, F.1    Eslamimanesh, A.2    Mohammadi, A.H.3    Richon, D.4
  • 16
    • 79955878346 scopus 로고    scopus 로고
    • Determination of Critical Properties and Acentric Factors of Pure Compounds Using the Artificial Neural Network Group Contribution Algorithm
    • Gharagheizi, F.; Eslamimanesh, A.; Mohammadi, A. H.; Richon, D. Determination of Critical Properties and Acentric Factors of Pure Compounds Using the Artificial Neural Network Group Contribution Algorithm J. Chem. Eng. Data 2011, 56, 2460
    • (2011) J. Chem. Eng. Data , vol.56 , pp. 2460
    • Gharagheizi, F.1    Eslamimanesh, A.2    Mohammadi, A.H.3    Richon, D.4
  • 17
    • 79952795758 scopus 로고    scopus 로고
    • Modeling of Thermal Cracking of Heavy Liquid Hydrocarbon: Application of Kinetic Modeling, Artificial Neural Network, and Neuro-Fuzzy Models
    • Sedighi, M.; Keyvanloo, K.; Towfighi, J. Modeling of Thermal Cracking of Heavy Liquid Hydrocarbon: Application of Kinetic Modeling, Artificial Neural Network, and Neuro-Fuzzy Models Ind. Eng. Chem. Res. 2011, 50, 1536
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 1536
    • Sedighi, M.1    Keyvanloo, K.2    Towfighi, J.3
  • 18
    • 78650085906 scopus 로고    scopus 로고
    • A New Neural Network Group Contribution Method for Estimation of Upper Flash Point of Pure Chemicals
    • Gharagheizi, F.; Abbasi, R. A New Neural Network Group Contribution Method for Estimation of Upper Flash Point of Pure Chemicals Ind. Eng. Chem. Res. 2010, 49, 12685
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 12685
    • Gharagheizi, F.1    Abbasi, R.2
  • 19
    • 65249112750 scopus 로고    scopus 로고
    • Neural Network Prediction of Interfacial Tension at Crystal/Solution Interface
    • Kumar, K. V. Neural Network Prediction of Interfacial Tension at Crystal/Solution Interface Ind. Eng. Chem. Res. 2009, 48, 4160
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 4160
    • Kumar, K.V.1
  • 20
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G. V. Approximation by superpositions of a sigmoidal function Math. Control, Signals, Syst. (MCSS) 1989, 2, 303
    • (1989) Math. Control, Signals, Syst. (MCSS) , vol.2 , pp. 303
    • Cybenko, G.V.1
  • 21
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Marquardt, D. An algorithm for least-squares estimation of nonlinear parameters SIAM J. Appl. Math. 1963, 11, 431
    • (1963) SIAM J. Appl. Math. , vol.11 , pp. 431
    • Marquardt, D.1
  • 22
    • 34250753151 scopus 로고
    • A method for the solution of certain problems in least squares
    • Levenberg, K. A method for the solution of certain problems in least squares SIAM J. Numer. Anal. 1944, 16, 588
    • (1944) SIAM J. Numer. Anal. , vol.16 , pp. 588
    • Levenberg, K.1
  • 23
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan, M.; Menhaj, M. Training feedforward networks with the Marquardt algorithm IEEE Trans. Neural Networks 1994, 5, 989
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 989
    • Hagan, M.1    Menhaj, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.