메뉴 건너뛰기




Volumn 22, Issue 2, 2003, Pages 185-190

Neural networks for effect prediction in environmental and health issues using large datasets

Author keywords

Daphnia; Fish; Neural networks; Steroid receptor binding; Tetrahymena; Toxicity; Vibrio

Indexed keywords

FISH; MAMMALS;

EID: 0038069350     PISSN: 1611020X     EISSN: None     Source Type: Journal    
DOI: 10.1002/qsar.200390010     Document Type: Conference Paper
Times cited : (27)

References (28)
  • 1
    • 85192682448 scopus 로고    scopus 로고
    • AQUIRE
    • U.S.Environmental Protection Agency, AQUIRE, http://www.epa.gov/ecotox, (2002).
    • (2002)
  • 2
    • 85192685271 scopus 로고    scopus 로고
    • TerraBase Inc., http://www.terrabase-inc.com, (2002).
    • (2002)
  • 3
    • 85192683403 scopus 로고    scopus 로고
    • ECOSAR
    • U.S.Environmental Protection Agency, ECOSAR, http://www.epa.gov/oppt/newchems/21ecosar.htm, (2000).
    • (2000)
  • 5
    • 0030981036 scopus 로고    scopus 로고
    • Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas)
    • Russom, C. L., Bradbury, S. P., Broderius, S. J., and Hammermeister, D. E., Predicting modes of toxic action from chemical structure: acute toxicity in the fathead minnow (Pimephales promelas), Environ. Toxicol. Chem. 16, 948-967 (1997).
    • (1997) Environ. Toxicol. Chem. , vol.16 , pp. 948-967
    • Russom, C.L.1    Bradbury, S.P.2    Broderius, S.J.3    Hammermeister, D.E.4
  • 6
    • 0013448972 scopus 로고    scopus 로고
    • On simple linear regression, multiple linear regression, and elementary probabilistic neural network with Gaussian kernel's performance in modeling toxicity values to fathead minnow
    • Chen, F. and Schüürmann, G. (Ed.), SETAC Press, Pensacola, FL
    • Kaiser, K. L. E., Niculescu, S. P., and McKinnon, M. B., On simple linear regression, multiple linear regression, and elementary probabilistic neural network with Gaussian kernel's performance in modeling toxicity values to fathead minnow, in: Chen, F. and Schüürmann, G. (Ed.), QSAR in Environmental Sciences -VII, SETAC Press, Pensacola, FL. 1997, pp.285-297.
    • (1997) QSAR in Environmental Sciences - VII , pp. 285-297
    • Kaiser, K.L.E.1    Niculescu, S.P.2    McKinnon, M.B.3
  • 7
    • 0032842090 scopus 로고    scopus 로고
    • Prediction of fathead minnow acute toxicity of organic compounds from molecular structure
    • Eldred, D. V., Weikel, C. L., Jurs, P. C., and Kaiser, K. L. E., Prediction of fathead minnow acute toxicity of organic compounds from molecular structure, Chem. Res. Toxicol 12, 670-678 (1999).
    • (1999) Chem. Res. Toxicol. , vol.12 , pp. 670-678
    • Eldred, D.V.1    Weikel, C.L.2    Jurs, P.C.3    Kaiser, K.L.E.4
  • 8
    • 0033151484 scopus 로고    scopus 로고
    • Using probabilistic neural networks to model the toxicity of chemicals to the fathead minnow (Pimephales promelas): A study based on 865 compounds
    • Kaiser, K. L. E., and Niculescu, S. P., Using probabilistic neural networks to model the toxicity of chemicals to the fathead minnow (Pimephales promelas): a study based on 865 compounds, Chemosphere 38, 3237-3245 (1999).
    • (1999) Chemosphere , vol.38 , pp. 3237-3245
    • Kaiser, K.L.E.1    Niculescu, S.P.2
  • 9
    • 0037602585 scopus 로고    scopus 로고
    • A comparison of model performance for six QSAR packages that predict acute toxicity to fish
    • in press
    • Moore, D. R. J., Breton, R. L., and MacDonald, D. B., A comparison of model performance for six QSAR packages that predict acute toxicity to fish, Environ. Toxicol. Chem., in press.
    • Environ. Toxicol. Chem.
    • Moore, D.R.J.1    Breton, R.L.2    MacDonald, D.B.3
  • 11
    • 85192681273 scopus 로고    scopus 로고
    • TOPKAT
    • Accelrys Inc., TOPKAT, http://www.accelrys.com (2002).
    • (2002)
  • 12
    • 0035145572 scopus 로고    scopus 로고
    • Modeling acute toxicity of chemicals to Daphnia magna: A probabilistic neural network approach
    • Kaiser, K. L. E., and Niculescu, S. P., Modeling acute toxicity of chemicals to Daphnia magna: a probabilistic neural network approach, Environ. Toxicol. Chem. 20, 420-431 (2001).
    • (2001) Environ. Toxicol. Chem. , vol.20 , pp. 420-431
    • Kaiser, K.L.E.1    Niculescu, S.P.2
  • 13
    • 0033093670 scopus 로고    scopus 로고
    • Response-surface analyses for toxicity to Tetrahymena pyriformis. Reactive carbonyl-containing aliphatic chemicals
    • Schultz, T. W., and Cronin, M. T. D., Response-surface analyses for toxicity to Tetrahymena pyriformis. Reactive carbonyl-containing aliphatic chemicals, J. Chem. Inf. Comput. Sci. 39, 304-309 (1999).
    • (1999) J. Chem. Inf. Comput. Sci. , vol.39 , pp. 304-309
    • Schultz, T.W.1    Cronin, M.T.D.2
  • 14
    • 0035190409 scopus 로고    scopus 로고
    • Linear regression and computational neural network prediction of Tetrahymena acute toxicity for aromatic compounds from molecular structure
    • Serra, J. R., Jurs, P. C., and Kaiser, K. L. E., Linear regression and computational neural network prediction of Tetrahymena acute toxicity for aromatic compounds from molecular structure, Chem. Res. Toxicol. 14, 1535-1545 (2001).
    • (2001) Chem. Res. Toxicol. , vol.14 , pp. 1535-1545
    • Serra, J.R.1    Jurs, P.C.2    Kaiser, K.L.E.3
  • 15
    • 0033834585 scopus 로고    scopus 로고
    • Modeling the toxicity of chemicals to Tetrahymena pyriformis using molecular fragment descriptors and probabilistic neural networks
    • Niculescu, S. P., Kaiser, K. L. E., and Schultz, T. W., Modeling the toxicity of chemicals to Tetrahymena pyriformis using molecular fragment descriptors and probabilistic neural networks, Arch. Environ. Contam. Toxicol. 39, 289-298 (2000).
    • (2000) Arch. Environ. Contam. Toxicol. , vol.39 , pp. 289-298
    • Niculescu, S.P.1    Kaiser, K.L.E.2    Schultz, T.W.3
  • 16
    • 0036490417 scopus 로고    scopus 로고
    • Probabilistic neural network modeling of the toxicity of chemicals to Tetrahymena pyriformis with molecular fragment descriptors
    • Kaiser, K. L. E., Niculescu, S. P., and Schultz, T. W., Probabilistic neural network modeling of the toxicity of chemicals to Tetrahymena pyriformis with molecular fragment descriptors, SAR QSAR Environ. Res. 13, 57-67 (2002).
    • (2002) SAR QSAR Environ. Res. , vol.13 , pp. 57-67
    • Kaiser, K.L.E.1    Niculescu, S.P.2    Schultz, T.W.3
  • 17
    • 0034094124 scopus 로고    scopus 로고
    • A QSAR model for the acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized neural networks
    • Burden, F. R., Winkler, D. A., A QSAR model for the acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized neural networks, Chem. Res. Toxicol. 13, 436-440 (2000).
    • (2000) Chem. Res. Toxicol. , vol.13 , pp. 436-440
    • Burden, F.R.1    Winkler, D.A.2
  • 19
    • 0002251602 scopus 로고
    • A general QSAR model for predicting the toxicity of organic chemicals to luminescent bacteria (MicrotoxR test)
    • Devillers, J., Bintein, S., Domine, D., and Karcher, W., A general QSAR model for predicting the toxicity of organic chemicals to luminescent bacteria (MicrotoxR test), SAR QSAR Environ. Res. 4, 29-38 (1995).
    • (1995) SAR QSAR Environ. Res. , vol.4 , pp. 29-38
    • Devillers, J.1    Bintein, S.2    Domine, D.3    Karcher, W.4
  • 20
    • 0002319693 scopus 로고    scopus 로고
    • A noncon generic model for predicting toxicity of organic molecules to Vibrio fischeri
    • Devillers, J., and Domine, D., A noncongeneric model for predicting toxicity of organic molecules to Vibrio fischeri, SAR QSAR Environ. Res. 10, 61-70 (1999).
    • (1999) SAR QSAR Environ. Res. , vol.10 , pp. 61-70
    • Devillers, J.1    Domine, D.2
  • 21
    • 0038277871 scopus 로고    scopus 로고
    • Neural network modeling of Vibrio fischeri toxicity data with structural physico-chemical parameters and molecular indicator variables
    • Walker, J. D. (Ed.), SETAC, Pensacola, FL
    • Kaiser, K. L. E., and Niculescu, S. P., Neural network modeling of Vibrio fischeri toxicity data with structural physico-chemical parameters and molecular indicator variables, in: Walker, J. D. (Ed.), Proc. 8th Intl. Workshop on QSAR in Environmental Sciences, SETAC, Pensacola, FL. 2002, pp.16-20.
    • (2002) Proc. 8th Intl. Workshop on QSAR in Environmental Sciences , pp. 16-20
    • Kaiser, K.L.E.1    Niculescu, S.P.2
  • 22
    • 0035756635 scopus 로고    scopus 로고
    • QSAR modeling of large heterogenous sets of molecules
    • Devillers, J., QSAR modeling of large heterogenous sets of molecules, SAR QSAR Environ. Res. 12, 515-528 (2001).
    • (2001) SAR QSAR Environ. Res. , vol.12 , pp. 515-528
    • Devillers, J.1
  • 23
    • 0002067512 scopus 로고    scopus 로고
    • Prediction of the progesterone receptor binding of steroids using a combination of genetic algorithms and neural networks
    • Devillers, J. (Ed.), Academic Press, London
    • Van Helden, S. P., Hamersma, H., and van Geerestein, V. J., Prediction of the progesterone receptor binding of steroids using a combination of genetic algorithms and neural networks, in: Devillers, J. (Ed.), Genetic Algorithms in Molecular Modeling, Academic Press, London. 1996, pp.159-192.
    • (1996) Genetic Algorithms in Molecular Modeling , pp. 159-192
    • Van Helden, S.P.1    Hamersma, H.2    Van Geerestein, V.J.3
  • 24
    • 0034184034 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship studies of progesterone receptor binding steroids
    • So, S.-S., van Helden, S. P., van Geerestein, V. J., and Karplus, M., Quantitative structure-activity relationship studies of progesterone receptor binding steroids, J. Chem. Inf. Comput. Sci. 40, 762-772 (2000).
    • (2000) J. Chem. Inf. Comput. Sci. , vol.40 , pp. 762-772
    • So, S.-S.1    Van Helden, S.P.2    Van Geerestein, V.J.3    Karplus, M.4
  • 25
    • 0035157708 scopus 로고    scopus 로고
    • Modeling the relative binding affinity of steroids to the progesterone receptor with probabilistic neural networks
    • Niculescu, S. P., and Kaiser, K. L. E., Modeling the relative binding affinity of steroids to the progesterone receptor with probabilistic neural networks, Quant. Struct.-Act. Relat. 20, 223-226 (2001).
    • (2001) Quant. Struct.-Act. Relat. , vol.20 , pp. 223-226
    • Niculescu, S.P.1    Kaiser, K.L.E.2
  • 26
    • 0034903124 scopus 로고    scopus 로고
    • On the PNN modelling of estrogen receptor binding data for carboxylic acid esters and organochlorine compounds
    • Kaiser, K. L. E., and Niculescu, S. P., On the PNN modelling of estrogen receptor binding data for carboxylic acid esters and organochlorine compounds, Wat. Qual. Res. J. Canada 36, 619-630 (2001).
    • (2001) Wat. Qual. Res. J. Canada , vol.36 , pp. 619-630
    • Kaiser, K.L.E.1    Niculescu, S.P.2
  • 27
    • 0034221206 scopus 로고    scopus 로고
    • Symbolic, neural, and Bayesian machine learning models for predicting carcinogenicity of chemical compounds
    • Bahler, D., Stone, B., Wellington, C., and Bristol, D. W., Symbolic, neural, and Bayesian machine learning models for predicting carcinogenicity of chemical compounds, J. Chem. Inf. Comput. Sci. 40, 906-914 (2000).
    • (2000) J. Chem. Inf. Comput. Sci. , vol.40 , pp. 906-914
    • Bahler, D.1    Stone, B.2    Wellington, C.3    Bristol, D.W.4
  • 28
    • 0003115254 scopus 로고    scopus 로고
    • Use of a backpropagation neural network and autocorrelation descriptors for predicting the biodegradation of organic chemicals
    • Devillers, J. (Ed.), Academic Press, London
    • Devillers, J., Domine, D., and Boethling, R. S., Use of a backpropagation neural network and autocorrelation descriptors for predicting the biodegradation of organic chemicals, in: Devillers, J. (Ed.), Neural Networks in QSAR and Drug Design, Academic Press, London. 1996, pp. 65-82.
    • (1996) Neural Networks in QSAR and Drug Design , pp. 65-82
    • Devillers, J.1    Domine, D.2    Boethling, R.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.