-
1
-
-
81855196008
-
Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions
-
Janke C., Bulinski J.C. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 2011, 12:773-786.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 773-786
-
-
Janke, C.1
Bulinski, J.C.2
-
2
-
-
0033791649
-
Structural insights into microtubule function
-
Nogales E. Structural insights into microtubule function. Annu. Rev. Biochem. 2000, 69:277-302.
-
(2000)
Annu. Rev. Biochem.
, vol.69
, pp. 277-302
-
-
Nogales, E.1
-
4
-
-
0023293040
-
Microtubules containing acetylated alpha-tubulin in mammalian cells in culture
-
Piperno G., LeDizet M., Chang X.J. Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J. Cell Biol. 1987, 104:289-302.
-
(1987)
J. Cell Biol.
, vol.104
, pp. 289-302
-
-
Piperno, G.1
LeDizet, M.2
Chang, X.J.3
-
5
-
-
84862658847
-
Posttranslational acetylation of alpha-tubulin constrains protofilament number in native microtubules
-
Cueva J.G., Hsin J., Huang K.C., Goodman M.B. Posttranslational acetylation of alpha-tubulin constrains protofilament number in native microtubules. Curr. Biol.: CB 2012, 22:1066-1074.
-
(2012)
Curr. Biol.: CB
, vol.22
, pp. 1066-1074
-
-
Cueva, J.G.1
Hsin, J.2
Huang, K.C.3
Goodman, M.B.4
-
6
-
-
34047175919
-
Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation
-
Dompierre J.P., Godin J.D., Charrin B.C., Cordelieres F.P., King S.J., Humbert S., Saudou F. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J. Neurosci.: Off. J. Soc. Neurosci. 2007, 27:3571-3583.
-
(2007)
J. Neurosci.: Off. J. Soc. Neurosci.
, vol.27
, pp. 3571-3583
-
-
Dompierre, J.P.1
Godin, J.D.2
Charrin, B.C.3
Cordelieres, F.P.4
King, S.J.5
Humbert, S.6
Saudou, F.7
-
7
-
-
33750618516
-
Microtubule acetylation promotes kinesin-1 binding and transport
-
Reed N.A., Cai D., Blasius T.L., Jih G.T., Meyhofer E., Gaertig J., Verhey K.J. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol.: CB 2006, 16:2166-2172.
-
(2006)
Curr. Biol.: CB
, vol.16
, pp. 2166-2172
-
-
Reed, N.A.1
Cai, D.2
Blasius, T.L.3
Jih, G.T.4
Meyhofer, E.5
Gaertig, J.6
Verhey, K.J.7
-
8
-
-
84891620677
-
AlphaTAT1 is the major alpha-tubulin acetyltransferase in mice
-
Kalebic N., Sorrentino S., Perlas E., Bolasco G., Martinez C., Heppenstall P.A. alphaTAT1 is the major alpha-tubulin acetyltransferase in mice. Nat. Commun. 2013, 4:1962.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1962
-
-
Kalebic, N.1
Sorrentino, S.2
Perlas, E.3
Bolasco, G.4
Martinez, C.5
Heppenstall, P.A.6
-
9
-
-
77956525850
-
MEC-17 is an alpha-tubulin acetyltransferase
-
218-U111
-
Akella J.S., Wloga D., Kim J., Starostina N.G., Lyons-Abbott S., Morrissette N.S., Dougan S.T., Kipreos E.T., Gaertig J. MEC-17 is an alpha-tubulin acetyltransferase. Nature 2010, 467. 218-U111.
-
(2010)
Nature
, vol.467
-
-
Akella, J.S.1
Wloga, D.2
Kim, J.3
Starostina, N.G.4
Lyons-Abbott, S.5
Morrissette, N.S.6
Dougan, S.T.7
Kipreos, E.T.8
Gaertig, J.9
-
10
-
-
0033534629
-
High-resolution model of the microtubule
-
Nogales E., Whittaker M., Milligan R.A., Downing K.H. High-resolution model of the microtubule. Cell 1999, 96:79-88.
-
(1999)
Cell
, vol.96
, pp. 79-88
-
-
Nogales, E.1
Whittaker, M.2
Milligan, R.A.3
Downing, K.H.4
-
11
-
-
0037161744
-
HDAC6 is a microtubule-associated deacetylase
-
Hubbert C., Guardiola A., Shao R., Kawaguchi Y., Ito A., Nixon A., Yoshida M., Wang X.F., Yao T.P. HDAC6 is a microtubule-associated deacetylase. Nature 2002, 417:455-458.
-
(2002)
Nature
, vol.417
, pp. 455-458
-
-
Hubbert, C.1
Guardiola, A.2
Shao, R.3
Kawaguchi, Y.4
Ito, A.5
Nixon, A.6
Yoshida, M.7
Wang, X.F.8
Yao, T.P.9
-
12
-
-
12244295468
-
In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation
-
Matsuyama A., Shimazu T., Sumida Y., Saito A., Yoshimatsu Y., Seigneurin-Berny D., Osada H., Komatsu Y., Nishino N., Khochbin S., Horinouchi S., Yoshida M. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J. 2002, 21:6820-6831.
-
(2002)
EMBO J.
, vol.21
, pp. 6820-6831
-
-
Matsuyama, A.1
Shimazu, T.2
Sumida, Y.3
Saito, A.4
Yoshimatsu, Y.5
Seigneurin-Berny, D.6
Osada, H.7
Komatsu, Y.8
Nishino, N.9
Khochbin, S.10
Horinouchi, S.11
Yoshida, M.12
-
14
-
-
33646550204
-
SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis
-
Vaquero A., Scher M.B., Lee D.H., Sutton A., Cheng H.L., Alt F.W., Serrano L., Sternglanz R., Reinberg D. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 2006, 20:1256-1261.
-
(2006)
Genes Dev.
, vol.20
, pp. 1256-1261
-
-
Vaquero, A.1
Scher, M.B.2
Lee, D.H.3
Sutton, A.4
Cheng, H.L.5
Alt, F.W.6
Serrano, L.7
Sternglanz, R.8
Reinberg, D.9
-
15
-
-
84897110504
-
Constitutive nuclear localization of an alternatively spliced sirtuin-2 isoform
-
Rack J.G., Vanlinden M.R., Lutter T., Aasland R., Ziegler M. Constitutive nuclear localization of an alternatively spliced sirtuin-2 isoform. J. Mol. Biol. 2013, 426:1677-1691.
-
(2013)
J. Mol. Biol.
, vol.426
, pp. 1677-1691
-
-
Rack, J.G.1
Vanlinden, M.R.2
Lutter, T.3
Aasland, R.4
Ziegler, M.5
-
16
-
-
34547397081
-
SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation
-
Jing E., Gesta S., Kahn C.R. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 2007, 6:105-114.
-
(2007)
Cell Metab.
, vol.6
, pp. 105-114
-
-
Jing, E.1
Gesta, S.2
Kahn, C.R.3
-
17
-
-
78649738291
-
SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310
-
Rothgiesser K.M., Erener S., Waibel S., Luscher B., Hottiger M.O. SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310. J. Cell Sci. 2010, 123:4251-4258.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 4251-4258
-
-
Rothgiesser, K.M.1
Erener, S.2
Waibel, S.3
Luscher, B.4
Hottiger, M.O.5
-
18
-
-
79959906869
-
Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase
-
Jiang W., Wang S., Xiao M., Lin Y., Zhou L., Lei Q., Xiong Y., Guan K.L., Zhao S. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol. Cell 2011, 43:33-44.
-
(2011)
Mol. Cell
, vol.43
, pp. 33-44
-
-
Jiang, W.1
Wang, S.2
Xiao, M.3
Lin, Y.4
Zhou, L.5
Lei, Q.6
Xiong, Y.7
Guan, K.L.8
Zhao, S.9
-
19
-
-
84874394209
-
Glucose and SIRT2 reciprocally mediate the regulation of keratin 8 by lysine acetylation
-
Snider N.T., Leonard J.M., Kwan R., Griggs N.W., Rui L., Omary M.B. Glucose and SIRT2 reciprocally mediate the regulation of keratin 8 by lysine acetylation. J. Cell Biol. 2013, 200:241-247.
-
(2013)
J. Cell Biol.
, vol.200
, pp. 241-247
-
-
Snider, N.T.1
Leonard, J.M.2
Kwan, R.3
Griggs, N.W.4
Rui, L.5
Omary, M.B.6
-
20
-
-
10944270187
-
The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells
-
Revollo J.R., Grimm A.A., Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J. Biol. Chem. 2004, 279:50754-50763.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 50754-50763
-
-
Revollo, J.R.1
Grimm, A.A.2
Imai, S.3
-
21
-
-
67349276169
-
+ metabolism and SIRT1 activity
-
+ metabolism and SIRT1 activity. Nature 2009, 458:1056-1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
Lagouge, M.4
Noriega, L.5
Milne, J.C.6
Elliott, P.J.7
Puigserver, P.8
Auwerx, J.9
-
22
-
-
84889046051
-
NAD biosynthesis in humans - enzymes, metabolites and therapeutic aspects
-
Dolle C., Skoge R.H., Vanlinden M.R., Ziegler M. NAD biosynthesis in humans - enzymes, metabolites and therapeutic aspects. Curr. Top. Med. Chem. 2013, 13:2907-2917.
-
(2013)
Curr. Top. Med. Chem.
, vol.13
, pp. 2907-2917
-
-
Dolle, C.1
Skoge, R.H.2
Vanlinden, M.R.3
Ziegler, M.4
-
23
-
-
84862022077
-
The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity
-
Canto C., Houtkooper R.H., Pirinen E., Youn D.Y., Oosterveer M.H., Cen Y., Fernandez-Marcos P.J., Yamamoto H., Andreux P.A., Cettour-Rose P., Gademann K., Rinsch C., Schoonjans K., Sauve A.A., Auwerx J. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012, 15:838-847.
-
(2012)
Cell Metab.
, vol.15
, pp. 838-847
-
-
Canto, C.1
Houtkooper, R.H.2
Pirinen, E.3
Youn, D.Y.4
Oosterveer, M.H.5
Cen, Y.6
Fernandez-Marcos, P.J.7
Yamamoto, H.8
Andreux, P.A.9
Cettour-Rose, P.10
Gademann, K.11
Rinsch, C.12
Schoonjans, K.13
Sauve, A.A.14
Auwerx, J.15
-
24
-
-
34548329953
-
Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells
-
Hara N., Yamada K., Shibata T., Osago H., Hashimoto T., Tsuchiya M. Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells. J. Biol. Chem. 2007, 282:24574-24582.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 24574-24582
-
-
Hara, N.1
Yamada, K.2
Shibata, T.3
Osago, H.4
Hashimoto, T.5
Tsuchiya, M.6
-
25
-
-
79957549799
-
Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation
-
Nikiforov A., Dolle C., Niere M., Ziegler M. Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation. J. Biol. Chem. 2011, 286:21767-21778.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 21767-21778
-
-
Nikiforov, A.1
Dolle, C.2
Niere, M.3
Ziegler, M.4
-
26
-
-
84883738070
-
+ biosynthesis in FK866-treated tumor cells
-
+ biosynthesis in FK866-treated tumor cells. J. Biol. Chem. 2013, 288:25938-25949.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 25938-25949
-
-
Grozio, A.1
Sociali, G.2
Sturla, L.3
Caffa, I.4
Soncini, D.5
Salis, A.6
Raffaelli, N.7
De Flora, A.8
Nencioni, A.9
Bruzzone, S.10
-
27
-
-
80053898694
-
Genetically encoded fluorescent sensors for intracellular NADH detection
-
Zhao Y., Jin J., Hu Q., Zhou H.M., Yi J., Yu Z., Xu L., Wang X., Yang Y., Loscalzo J. Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab. 2011, 14:555-566.
-
(2011)
Cell Metab.
, vol.14
, pp. 555-566
-
-
Zhao, Y.1
Jin, J.2
Hu, Q.3
Zhou, H.M.4
Yi, J.5
Yu, Z.6
Xu, L.7
Wang, X.8
Yang, Y.9
Loscalzo, J.10
-
28
-
-
0242526050
-
FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis
-
Hasmann M., Schemainda I. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res. 2003, 63:7436-7442.
-
(2003)
Cancer Res.
, vol.63
, pp. 7436-7442
-
-
Hasmann, M.1
Schemainda, I.2
-
29
-
-
33745817828
-
Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents
-
Khan J.A., Tao X., Tong L. Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents. Nat. Struct. Mol. Biol. 2006, 13:582-588.
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 582-588
-
-
Khan, J.A.1
Tao, X.2
Tong, L.3
-
30
-
-
84881367747
-
Medicinal chemistry of nicotinamide phosphoribosyltransferase (NAMPT) inhibitors
-
Galli U., Travelli C., Massarotti A., Fakhfouri G., Rahimian R., Tron G.C., Genazzani A.A. Medicinal chemistry of nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. J. Med. Chem. 2013, 56:6279-6296.
-
(2013)
J. Med. Chem.
, vol.56
, pp. 6279-6296
-
-
Galli, U.1
Travelli, C.2
Massarotti, A.3
Fakhfouri, G.4
Rahimian, R.5
Tron, G.C.6
Genazzani, A.A.7
-
31
-
-
79953752384
-
PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation
-
Bai P., Canto C., Oudart H., Brunyanszki A., Cen Y., Thomas C., Yamamoto H., Huber A., Kiss B., Houtkooper R.H., Schoonjans K., Schreiber V., Sauve A.A., Menissier-de Murcia J., Auwerx J. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 2011, 13:461-468.
-
(2011)
Cell Metab.
, vol.13
, pp. 461-468
-
-
Bai, P.1
Canto, C.2
Oudart, H.3
Brunyanszki, A.4
Cen, Y.5
Thomas, C.6
Yamamoto, H.7
Huber, A.8
Kiss, B.9
Houtkooper, R.H.10
Schoonjans, K.11
Schreiber, V.12
Sauve, A.A.13
Menissier-de Murcia, J.14
Auwerx, J.15
-
32
-
-
70949092805
-
+ depletion in activated T lymphocytes through Nampt inhibition reduces demyelination and disability in EAE
-
+ depletion in activated T lymphocytes through Nampt inhibition reduces demyelination and disability in EAE. PLoS ONE 2009, 4:e7897.
-
(2009)
PLoS ONE
, vol.4
, pp. e7897
-
-
Bruzzone, S.1
Fruscione, F.2
Morando, S.3
Ferrando, T.4
Poggi, A.5
Garuti, A.6
D'Urso, A.7
Selmo, M.8
Benvenuto, F.9
Cea, M.10
Zoppoli, G.11
Moran, E.12
Soncini, D.13
Ballestrero, A.14
Sordat, B.15
Patrone, F.16
Mostoslavsky, R.17
Uccelli, A.18
Nencioni, A.19
-
33
-
-
84055223632
-
The high-resolution crystal structure of periplasmic Haemophilus influenzae NAD nucleotidase reveals a novel enzymatic function of human CD73 related to NAD metabolism
-
Garavaglia S., Bruzzone S., Cassani C., Canella L., Allegrone G., Sturla L., Mannino E., Millo E., De Flora A., Rizzi M. The high-resolution crystal structure of periplasmic Haemophilus influenzae NAD nucleotidase reveals a novel enzymatic function of human CD73 related to NAD metabolism. Biochem. J. 2012, 441:131-141.
-
(2012)
Biochem. J.
, vol.441
, pp. 131-141
-
-
Garavaglia, S.1
Bruzzone, S.2
Cassani, C.3
Canella, L.4
Allegrone, G.5
Sturla, L.6
Mannino, E.7
Millo, E.8
De Flora, A.9
Rizzi, M.10
-
34
-
-
84873291018
-
+ biosynthesis, in human cancer cells: metabolic basis and potential clinical implications
-
+ biosynthesis, in human cancer cells: metabolic basis and potential clinical implications. J. Biol. Chem. 2013, 288:3500-3511.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 3500-3511
-
-
Tan, B.1
Young, D.A.2
Lu, Z.H.3
Wang, T.4
Meier, T.I.5
Shepard, R.L.6
Roth, K.7
Zhai, Y.8
Huss, K.9
Kuo, M.S.10
Gillig, J.11
Parthasarathy, S.12
Burkholder, T.P.13
Smith, M.C.14
Geeganage, S.15
Zhao, G.16
-
35
-
-
41449118098
-
NAD depletion by FK866 induces autophagy
-
Billington R.A., Genazzani A.A., Travelli C., Condorelli F. NAD depletion by FK866 induces autophagy. Autophagy 2008, 4:385-387.
-
(2008)
Autophagy
, vol.4
, pp. 385-387
-
-
Billington, R.A.1
Genazzani, A.A.2
Travelli, C.3
Condorelli, F.4
-
36
-
-
80053920774
-
Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
-
Yoshino J., Mills K.F., Yoon M.J., Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011, 14:528-536.
-
(2011)
Cell Metab.
, vol.14
, pp. 528-536
-
-
Yoshino, J.1
Mills, K.F.2
Yoon, M.J.3
Imai, S.4
-
37
-
-
82455212299
-
Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function
-
Caton P.W., Kieswich J., Yaqoob M.M., Holness M.J., Sugden M.C. Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function. Diabetologia 2011, 54:3083-3092.
-
(2011)
Diabetologia
, vol.54
, pp. 3083-3092
-
-
Caton, P.W.1
Kieswich, J.2
Yaqoob, M.M.3
Holness, M.J.4
Sugden, M.C.5
-
38
-
-
84884248040
-
+ cycle drives mitochondrial oxidative metabolism in mice
-
+ cycle drives mitochondrial oxidative metabolism in mice. Science 2013, 342:1243417.
-
(2013)
Science
, vol.342
, pp. 1243417
-
-
Peek, C.B.1
Affinati, A.H.2
Ramsey, K.M.3
Kuo, H.Y.4
Yu, W.5
Sena, L.A.6
Ilkayeva, O.7
Marcheva, B.8
Kobayashi, Y.9
Omura, C.10
Levine, D.C.11
Bacsik, D.J.12
Gius, D.13
Newgard, C.B.14
Goetzman, E.15
Chandel, N.S.16
Denu, J.M.17
Mrksich, M.18
Bass, J.19
-
39
-
-
84885439862
-
Furry promotes acetylation of microtubules in the mitotic spindle by inhibition of SIRT2 tubulin deacetylase
-
Nagai T., Ikeda M., Chiba S., Kanno S., Mizuno K. Furry promotes acetylation of microtubules in the mitotic spindle by inhibition of SIRT2 tubulin deacetylase. J. Cell Sci. 2013, 126:4369-4380.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 4369-4380
-
-
Nagai, T.1
Ikeda, M.2
Chiba, S.3
Kanno, S.4
Mizuno, K.5
-
40
-
-
33847053144
-
SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress
-
Inoue T., Hiratsuka M., Osaki M., Yamada H., Kishimoto I., Yamaguchi S., Nakano S., Katoh M., Ito H., Oshimura M. SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene 2007, 26:945-957.
-
(2007)
Oncogene
, vol.26
, pp. 945-957
-
-
Inoue, T.1
Hiratsuka, M.2
Osaki, M.3
Yamada, H.4
Kishimoto, I.5
Yamaguchi, S.6
Nakano, S.7
Katoh, M.8
Ito, H.9
Oshimura, M.10
-
41
-
-
18244376911
-
Metabolic signatures associated with a NAD synthesis inhibitor-induced tumor apoptosis identified by 1H-decoupled-31P magnetic resonance spectroscopy
-
Muruganandham M., Alfieri A.A., Matei C., Chen Y., Sukenick G., Schemainda I., Hasmann M., Saltz L.B., Koutcher J.A. Metabolic signatures associated with a NAD synthesis inhibitor-induced tumor apoptosis identified by 1H-decoupled-31P magnetic resonance spectroscopy. Clin. Cancer Res.: Off. J. Am. Assoc. Cancer Res. 2005, 11:3503-3513.
-
(2005)
Clin. Cancer Res.: Off. J. Am. Assoc. Cancer Res.
, vol.11
, pp. 3503-3513
-
-
Muruganandham, M.1
Alfieri, A.A.2
Matei, C.3
Chen, Y.4
Sukenick, G.5
Schemainda, I.6
Hasmann, M.7
Saltz, L.B.8
Koutcher, J.A.9
|