메뉴 건너뛰기




Volumn 48, Issue , 2014, Pages 457-484

Centromeric heterochromatin: The primordial segregation machine

Author keywords

centromere; chromosome segregation; DNA mechanics; heterochromatin; molecular springs

Indexed keywords

CHROMATIN PROTEIN; COHESIN; CONDENSIN; DNA; POLYMER; PROTEIN; REPETITIVE DNA; UNCLASSIFIED DRUG; AUTOANTIGEN; CENTROMERE PROTEIN A; HETEROCHROMATIN; NONHISTONE PROTEIN;

EID: 84913586568     PISSN: 00664197     EISSN: 15452948     Source Type: Book Series    
DOI: 10.1146/annurev-genet-120213-092033     Document Type: Article
Times cited : (62)

References (178)
  • 1
    • 0037017393 scopus 로고    scopus 로고
    • Condensin and cohesin display different arm conformations with characteristic hinge angles
    • Anderson DE, Losada A, Erickson HP, Hirano T. 2002. Condensin and cohesin display different arm conformations with characteristic hinge angles. J. Cell Biol. 156:419-24
    • (2002) J. Cell Biol. , vol.156 , pp. 419-424
    • Anderson, D.E.1    Losada, A.2    Erickson, H.P.3    Hirano, T.4
  • 2
    • 70350223561 scopus 로고    scopus 로고
    • Function and assembly of DNA looping, clustering, and microtubule attachment complexes within a eukaryotic kinetochore
    • Anderson M, Haase J, Yeh E, Bloom K. 2009. Function and assembly of DNA looping, clustering, and microtubule attachment complexes within a eukaryotic kinetochore. Mol. Biol. Cell 20:4131-39
    • (2009) Mol. Biol. Cell , vol.20 , pp. 4131-4139
    • Anderson, M.1    Haase, J.2    Yeh, E.3    Bloom, K.4
  • 3
    • 33645999511 scopus 로고
    • On interaction between two bodies immersed in a solution of macromolecules
    • Asakura S, Oosawa F. 1954. On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 22:1255-56
    • (1954) J. Chem. Phys. , vol.22 , pp. 1255-1256
    • Asakura, S.1    Oosawa, F.2
  • 4
    • 42649106489 scopus 로고    scopus 로고
    • Cell cycle-dependent kinetochore localization of condensin complex in Saccharomyces cerevisiae
    • Bachellier-Bassi S, Gadal O, Bourout G, Nehrbass U. 2008. Cell cycle-dependent kinetochore localization of condensin complex in Saccharomyces cerevisiae. J. Struct. Biol. 162:248-59
    • (2008) J. Struct. Biol. , vol.162 , pp. 248-259
    • Bachellier-Bassi, S.1    Gadal, O.2    Bourout, G.3    Nehrbass, U.4
  • 6
    • 73949086570 scopus 로고    scopus 로고
    • Analyzing Top2 distribution on yeast chromosomes by chromatin immunoprecipitation
    • Baldwin M, Warsi T, Bachant J. 2009. Analyzing Top2 distribution on yeast chromosomes by chromatin immunoprecipitation. Methods Mol. Biol. 582:119-30
    • (2009) Methods Mol. Biol. , vol.582 , pp. 119-130
    • Baldwin, M.1    Warsi, T.2    Bachant, J.3
  • 7
    • 0035513783 scopus 로고    scopus 로고
    • Men and sin: What's the difference? Nat
    • Bardin AJ, Amon A. 2001. Men and sin: What's the difference? Nat. Rev. Mol. Cell Biol. 2:815-26
    • (2001) Rev. Mol. Cell Biol. , vol.2 , pp. 815-826
    • Bardin, A.J.1    Amon, A.2
  • 8
    • 84858116073 scopus 로고    scopus 로고
    • Epigenetic engineering: Histone H3K9 acetylation is compatible with kinetochore structure and function
    • Bergmann JH, Jakubsche JN, Martins NM, Kagansky A, Nakano M, et al. 2012. Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function. J. Cell Sci. 125:411-21
    • (2012) J. Cell Sci. , vol.125 , pp. 411-421
    • Bergmann, J.H.1    Jakubsche, J.N.2    Martins, N.M.3    Kagansky, A.4    Nakano, M.5
  • 9
    • 78751636707 scopus 로고    scopus 로고
    • Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore
    • Bergmann JH, Rodriguez MG, Martins NM, Kimura H, Kelly DA, et al. 2011. Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J. 30:328-40
    • (2011) EMBO J. , vol.30 , pp. 328-340
    • Bergmann, J.H.1    Rodriguez, M.G.2    Martins, N.M.3    Kimura, H.4    Kelly, D.A.5
  • 10
    • 84881082807 scopus 로고    scopus 로고
    • The composition, functions, and regulation of the budding yeast kinetochore
    • Biggins S. 2013. The composition, functions, and regulation of the budding yeast kinetochore. Genetics 194:817-46
    • (2013) Genetics , vol.194 , pp. 817-846
    • Biggins, S.1
  • 11
    • 78650087172 scopus 로고    scopus 로고
    • Tension management in the kinetochore
    • Bloom K, Yeh E. 2010. Tension management in the kinetochore. Curr. Biol. 20:R1040-48
    • (2010) Curr. Biol. , vol.20 , pp. R1040-R1048
    • Bloom, K.1    Yeh, E.2
  • 12
    • 41149112015 scopus 로고    scopus 로고
    • Beyond the code: The mechanical properties of DNA as they relate to mitosis
    • Bloom KS. 2008. Beyond the code: the mechanical properties of DNA as they relate to mitosis. Chromosoma 117:103-10
    • (2008) Chromosoma , vol.117 , pp. 103-110
    • Bloom, K.S.1
  • 13
    • 0036200147 scopus 로고    scopus 로고
    • Conserved organization of centromeric chromatin in flies and humans
    • Blower MD, Sullivan BA, Karpen GH. 2002. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2:319-30
    • (2002) Dev. Cell , vol.2 , pp. 319-330
    • Blower, M.D.1    Sullivan, B.A.2    Karpen, G.H.3
  • 14
    • 0019849638 scopus 로고
    • Kinetochore structure, duplication, and distribution in mammalian cells: Analysis by human autoantibodies from scleroderma patients
    • Brenner S, Pepper D, Berns MW, Tan E, Brinkley BR. 1981. Kinetochore structure, duplication, and distribution in mammalian cells: analysis by human autoantibodies from scleroderma patients. J. Cell Biol. 91:95-102
    • (1981) J. Cell Biol. , vol.91 , pp. 95-102
    • Brenner, S.1    Pepper, D.2    Berns, M.W.3    Tan, E.4    Brinkley, B.R.5
  • 15
    • 0013869542 scopus 로고
    • The fine structure of the kinetochore of a mammalian cell in vitro
    • Brinkley BR, Stubblefield E. 1966. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma 19:28-43
    • (1966) Chromosoma , vol.19 , pp. 28-43
    • Brinkley, B.R.1    Stubblefield, E.2
  • 16
    • 84873534317 scopus 로고    scopus 로고
    • The CENP-A nucleosome: A battle between Dr Jekyll and Mr Hyde
    • Bui M, Walkiewicz MP, Dimitriadis EK, Dalal Y. 2013. The CENP-A nucleosome: a battle between Dr Jekyll and Mr Hyde. Nucleus 4:37-42
    • (2013) Nucleus , vol.4 , pp. 37-42
    • Bui, M.1    Walkiewicz, M.P.2    Dimitriadis, E.K.3    Dalal, Y.4
  • 18
    • 84879177035 scopus 로고    scopus 로고
    • The 2 micron plasmid of Saccharomyces cerevisiae: A miniaturized selfish genome with optimized functional competence
    • Chan KM, Liu YT, Ma CH, Jayaram M, Sau S. 2013. The 2 micron plasmid of Saccharomyces cerevisiae: a miniaturized selfish genome with optimized functional competence. Plasmid 70:2-17
    • (2013) Plasmid , vol.70 , pp. 2-17
    • Chan, K.M.1    Liu, Y.T.2    Ma, C.H.3    Jayaram, M.4    Sau, S.5
  • 19
    • 84891899149 scopus 로고    scopus 로고
    • Linked in: Formation and regulation of microtubule attachments during chromosome segregation
    • Cheerambathur DK, Desai A. 2014. Linked in: formation and regulation of microtubule attachments during chromosome segregation. Curr. Opin. Cell Biol. 26:113-22
    • (2014) Curr. Opin. Cell Biol. , vol.26 , pp. 113-122
    • Cheerambathur, D.K.1    Desai, A.2
  • 20
    • 0024609820 scopus 로고
    • Kinetochore size variation in mammalian chromosomes: An image analysis study with evolutionary implications
    • Cherry LM, Faulkner AJ, Grossberg LA, Balczon R. 1989. Kinetochore size variation in mammalian chromosomes: an image analysis study with evolutionary implications. J. Cell Sci. 92(Pt. 2):281-89
    • (1989) J. Cell Sci. , vol.92 , pp. 281-289
    • Cherry, L.M.1    Faulkner, A.J.2    Grossberg, L.A.3    Balczon, R.4
  • 22
    • 33645962805 scopus 로고    scopus 로고
    • Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes
    • Chikashige Y, Tsutsumi C, Yamane M, Okamasa K, Haraguchi T, Hiraoka Y. 2006. Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125:59-69
    • (2006) Cell , vol.125 , pp. 59-69
    • Chikashige, Y.1    Tsutsumi, C.2    Yamane, M.3    Okamasa, K.4    Haraguchi, T.5    Hiraoka, Y.6
  • 23
    • 0025303703 scopus 로고
    • Functional analysis of a centromere from fission yeast: A role for centromerespecific repeated DNA sequences
    • Clarke L, Baum MP. 1990. Functional analysis of a centromere from fission yeast: a role for centromerespecific repeated DNA sequences. Mol. Cell. Biol. 10:1863-72
    • (1990) Mol. Cell. Biol. , vol.10 , pp. 1863-1872
    • Clarke, L.1    Baum, M.P.2
  • 24
    • 0019162013 scopus 로고
    • Isolation of a yeast centromere and construction of functional small circular chromosomes
    • Clarke L, Carbon J. 1980. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287:504-9
    • (1980) Nature , vol.287 , pp. 504-509
    • Clarke, L.1    Carbon, J.2
  • 25
    • 79961029402 scopus 로고    scopus 로고
    • Condensin structures chromosomal DNA through topological links
    • Cuylen S, Metz J, Haering CH. 2011. Condensin structures chromosomal DNA through topological links. Nat. Struct. Mol. Biol. 18:894-901
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 894-901
    • Cuylen, S.1    Metz, J.2    Haering, C.H.3
  • 26
    • 84888155462 scopus 로고    scopus 로고
    • Entrapment of chromosomes by condensin rings prevents their breakage during cytokinesis
    • Cuylen S, Metz J, Hruby A, Haering CH. 2013. Entrapment of chromosomes by condensin rings prevents their breakage during cytokinesis. Dev. Cell. 27:469-78
    • (2013) Dev. Cell. , vol.27 , pp. 469-478
    • Cuylen, S.1    Metz, J.2    Hruby, A.3    Haering, C.H.4
  • 27
    • 50049126078 scopus 로고    scopus 로고
    • Identification of cis-Acting sites for condensin loading onto budding yeast chromosomes
    • D'Ambrosio C, Schmidt CK, Katou Y, Kelly G, Itoh T, et al. 2008. Identification of cis-Acting sites for condensin loading onto budding yeast chromosomes. Genes Dev. 22:2215-27
    • (2008) Genes Dev. , vol.22 , pp. 2215-2227
    • D'Ambrosio, C.1    Schmidt, C.K.2    Katou, Y.3    Kelly, G.4    Itoh, T.5
  • 28
    • 2342551489 scopus 로고    scopus 로고
    • Cdc14 and condensin control the dissolution of cohesinindependent chromosome linkages at repeated DNA
    • D'Amours D, Stegmeier F, Amon A. 2004. Cdc14 and condensin control the dissolution of cohesinindependent chromosome linkages at repeated DNA. Cell 117:455-69
    • (2004) Cell , vol.117 , pp. 455-469
    • D'Amours, D.1    Stegmeier, F.2    Amon, A.3
  • 30
    • 84872072332 scopus 로고    scopus 로고
    • CENP-A: The key player behind centromere identity, propagation, and kinetochore assembly
    • De Rop V, Padeganeh A, Maddox PS. 2012. CENP-A: the key player behind centromere identity, propagation, and kinetochore assembly. Chromosoma 121:527-38
    • (2012) Chromosoma , vol.121 , pp. 527-538
    • De Rop, V.1    Padeganeh, A.2    Maddox, P.S.3
  • 31
    • 80053599582 scopus 로고    scopus 로고
    • Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells
    • Deng Y, Sun M, Shaevitz JW. 2011. Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells. Phys. Rev. Lett. 107:158101
    • (2011) Phys. Rev. Lett. , vol.107 , pp. 158101
    • Deng, Y.1    Sun, M.2    Shaevitz, J.W.3
  • 32
    • 0027391206 scopus 로고
    • Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe
    • Ding R, McDonald KL, McIntosh JR. 1993. Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe. J. Cell Biol. 120:141-51
    • (1993) J. Cell Biol. , vol.120 , pp. 141-151
    • Ding, R.1    McDonald, K.L.2    McIntosh, J.R.3
  • 35
    • 79953162010 scopus 로고    scopus 로고
    • Cohesin: Genomic insights into controlling gene transcription and development
    • Dorsett D. 2011. Cohesin: genomic insights into controlling gene transcription and development. Curr. Opin. Genet. Dev. 21:199-206
    • (2011) Curr. Opin. Genet. Dev. , vol.21 , pp. 199-206
    • Dorsett, D.1
  • 36
    • 84879208137 scopus 로고    scopus 로고
    • Cohesin at active genes: A unifying theme for cohesin and gene expression from model organisms to humans
    • Dorsett D, Merkenschlager M. 2013. Cohesin at active genes: a unifying theme for cohesin and gene expression from model organisms to humans. Curr. Opin. Cell Biol. 25:327-33
    • (2013) Curr. Opin. Cell Biol. , vol.25 , pp. 327-333
    • Dorsett, D.1    Merkenschlager, M.2
  • 39
    • 33846949409 scopus 로고    scopus 로고
    • The enhancement of pericentromeric cohesin association by conserved kinetochore components promotes high-fidelity chromosome segregation and is sensitive to microtubule-based tension
    • Eckert CA, Gravdahl DJ, Megee PC. 2007. The enhancement of pericentromeric cohesin association by conserved kinetochore components promotes high-fidelity chromosome segregation and is sensitive to microtubule-based tension. Genes Dev. 21:278-91
    • (2007) Genes Dev. , vol.21 , pp. 278-291
    • Eckert, C.A.1    Gravdahl, D.J.2    Megee, P.C.3
  • 40
    • 84857122106 scopus 로고    scopus 로고
    • Centromeric chromatin and the pathway that drives its propagation
    • Falk SJ, Black BE. 2013. Centromeric chromatin and the pathway that drives its propagation. Biochim. Biophys. Acta 1819:313-21
    • (2013) Biochim. Biophys. Acta , pp. 313-321
    • Falk, S.J.1    Black, B.E.2
  • 41
    • 0002982888 scopus 로고
    • There's plenty of room at the bottom
    • Feynman RP. 1960. There's plenty of room at the bottom. Caltech Eng. Sci. 23:22-36
    • (1960) Caltech Eng. Sci. , vol.23 , pp. 22-36
    • Feynman, R.P.1
  • 42
    • 84877694848 scopus 로고    scopus 로고
    • Four-dimensional imaging of E. Coli nucleoid organization and dynamics in living cells
    • Fisher JK, Bourniquel A, Witz G, Weiner B, Prentiss M, Kleckner N. 2013. Four-dimensional imaging of E. Coli nucleoid organization and dynamics in living cells. Cell 153:882-95
    • (2013) Cell , vol.153 , pp. 882-895
    • Fisher, J.K.1    Bourniquel, A.2    Witz, G.3    Weiner, B.4    Prentiss, M.5    Kleckner, N.6
  • 43
    • 0020325948 scopus 로고
    • Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs
    • Fitzgerald-Hayes M, Clarke L, Carbon J. 1982. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29:235-44
    • (1982) Cell , vol.29 , pp. 235-244
    • Fitzgerald-Hayes, M.1    Clarke, L.2    Carbon, J.3
  • 46
    • 0018957217 scopus 로고
    • The CREST syndrome: A distinct serologic entity with anticentromere antibodies
    • Fritzler MJ, Kinsella TD. 1980. The CREST syndrome: a distinct serologic entity with anticentromere antibodies. Am. J. Med. 69:520-26
    • (1980) Am. J. Med. , vol.69 , pp. 520-526
    • Fritzler, M.J.1    Kinsella, T.D.2
  • 47
    • 84876051404 scopus 로고    scopus 로고
    • De novo centromere formation on a chromosome fragment in maize
    • Fu S, Lv Z, Gao Z, Wu H, Pang J, et al. 2013. De novo centromere formation on a chromosome fragment in maize. Proc. Natl. Acad. Sci. USA 110:6033-36
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 6033-6036
    • Fu, S.1    Lv, Z.2    Gao, Z.3    Wu, H.4    Pang, J.5
  • 48
    • 63049116550 scopus 로고    scopus 로고
    • Heterochromatin and the cohesion of sister chromatids
    • Gartenberg M. 2009. Heterochromatin and the cohesion of sister chromatids. Chromosome Res. 17:229-38
    • (2009) Chromosome Res. , vol.17 , pp. 229-238
    • Gartenberg, M.1
  • 49
    • 79955539577 scopus 로고    scopus 로고
    • Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes
    • Gascoigne KE, Takeuchi K, Suzuki A, Hori T, Fukagawa T, Cheeseman IM. 2011. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145:410-22
    • (2011) Cell , vol.145 , pp. 410-422
    • Gascoigne, K.E.1    Takeuchi, K.2    Suzuki, A.3    Hori, T.4    Fukagawa, T.5    Cheeseman, I.M.6
  • 50
    • 84870158714 scopus 로고    scopus 로고
    • RNA as a structural and regulatory component of the centromere
    • Gent JI, Dawe RK. 2012. RNA as a structural and regulatory component of the centromere. Annu. Rev. Genet. 46:443-53
    • (2012) Annu. Rev. Genet. , vol.46 , pp. 443-453
    • Gent, J.I.1    Dawe, R.K.2
  • 51
    • 77449152577 scopus 로고    scopus 로고
    • Yeast cohesin complex embraces 2 micron plasmid sisters in a tri-linked catenane complex
    • Ghosh SK, Huang CC, Hajra S, Jayaram M. 2010. Yeast cohesin complex embraces 2 micron plasmid sisters in a tri-linked catenane complex. Nucleic Acids Res. 38:570-84
    • (2010) Nucleic Acids Res. , vol.38 , pp. 570-584
    • Ghosh, S.K.1    Huang, C.C.2    Hajra, S.3    Jayaram, M.4
  • 52
    • 19344366459 scopus 로고    scopus 로고
    • Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae
    • Glynn EF, Megee PC, Yu HG, Mistrot C, Unal E, et al. 2004. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLOS Biol. 2:E259
    • (2004) PLOS Biol. , vol.2 , pp. E259
    • Glynn, E.F.1    Megee, P.C.2    Yu, H.G.3    Mistrot, C.4    Unal, E.5
  • 54
    • 0027193622 scopus 로고
    • NDC10: A gene involved in chromosome segregation in Saccharomyces cerevisiae
    • Goh PY, Kilmartin JV. 1993. NDC10: a gene involved in chromosome segregation in Saccharomyces cerevisiae. J. Cell Biol. 121:503-12
    • (1993) J. Cell Biol. , vol.121 , pp. 503-512
    • Goh, P.Y.1    Kilmartin, J.V.2
  • 55
    • 68749117667 scopus 로고    scopus 로고
    • DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions
    • Gopalakrishnan S, Sullivan BA, Trazzi S, Della Valle G, Robertson KD. 2009. DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions. Hum. Mol. Genet. 18:3178-93
    • (2009) Hum. Mol. Genet. , vol.18 , pp. 3178-3193
    • Gopalakrishnan, S.1    Sullivan, B.A.2    Trazzi, S.3    Della Valle, G.4    Robertson, K.D.5
  • 56
    • 0034677654 scopus 로고    scopus 로고
    • Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast
    • Goshima G, Yanagida M. 2000. Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast. Cell 100:619-33
    • (2000) Cell , vol.100 , pp. 619-633
    • Goshima, G.1    Yanagida, M.2
  • 57
    • 4444314939 scopus 로고    scopus 로고
    • Polymers: A multitude of macromolecules
    • Granick S, Rubinstein M. 2004. Polymers: a multitude of macromolecules. Nat. Mater. 3:586-87
    • (2004) Nat. Mater. , vol.3 , pp. 586-587
    • Granick, S.1    Rubinstein, M.2
  • 58
    • 0023091437 scopus 로고
    • Transition of chromatin from the "10 nm" lower order structure, to the "30 nm" higher order structure as followed by small angle X-ray scattering
    • Greulich KO, Wachtel E, Ausio J, Seger D, Eisenberg H. 1987. Transition of chromatin from the "10 nm" lower order structure, to the "30 nm" higher order structure as followed by small angle X-ray scattering. J. Mol. Biol. 193:709-21
    • (1987) J. Mol. Biol. , vol.193 , pp. 709-721
    • Greulich, K.O.1    Wachtel, E.2    Ausio, J.3    Seger, D.4    Eisenberg, H.5
  • 59
    • 77952236323 scopus 로고    scopus 로고
    • RNAi-dependent formation of heterochromatin and its diverse functions
    • Grewal SI. 2010. RNAi-dependent formation of heterochromatin and its diverse functions. Curr. Opin. Genet. Dev. 20:134-41
    • (2010) Curr. Opin. Genet. Dev. , vol.20 , pp. 134-141
    • Grewal, S.I.1
  • 60
  • 62
    • 84885318996 scopus 로고    scopus 로고
    • A3Dmap of the yeast kinetochore reveals the presence of core and accessory centromere-specific histone
    • Haase J, Mishra PK, Stephens A, Haggerty R, Quammen C, et al. 2013. A3Dmap of the yeast kinetochore reveals the presence of core and accessory centromere-specific histone. Curr. Biol. 23:1939-44
    • (2013) Curr. Biol. , vol.23 , pp. 1939-1944
    • Haase, J.1    Mishra, P.K.2    Stephens, A.3    Haggerty, R.4    Quammen, C.5
  • 63
    • 84858707794 scopus 로고    scopus 로고
    • Bub1 kinase and Sgo1 modulate pericentric chromatin in response to altered microtubule dynamics
    • Haase J, Stephens A, Verdaasdonk J, Yeh E, Bloom K. 2012. Bub1 kinase and Sgo1 modulate pericentric chromatin in response to altered microtubule dynamics. Curr. Biol. 22:471-81
    • (2012) Curr. Biol. , vol.22 , pp. 471-481
    • Haase, J.1    Stephens, A.2    Verdaasdonk, J.3    Yeh, E.4    Bloom, K.5
  • 64
    • 0036242551 scopus 로고    scopus 로고
    • Molecular architecture of SMC proteins and the yeast cohesin complex
    • Haering CH, Lowe J, Hochwagen A, Nasmyth K. 2002. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol. Cell 9:773-88
    • (2002) Mol. Cell , vol.9 , pp. 773-788
    • Haering, C.H.1    Lowe, J.2    Hochwagen, A.3    Nasmyth, K.4
  • 65
    • 50049112678 scopus 로고    scopus 로고
    • Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes
    • Haeusler RA, Pratt-Hyatt M, Good PD, Gipson TA, Engelke DR. 2008. Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev. 22:2204-14
    • (2008) Genes Dev. , vol.22 , pp. 2204-2214
    • Haeusler, R.A.1    Pratt-Hyatt, M.2    Good, P.D.3    Gipson, T.A.4    Engelke, D.R.5
  • 66
    • 84864881695 scopus 로고    scopus 로고
    • Pericentric and centromeric transcription: A perfect balance required
    • Hall LE, Mitchell SE, O'Neill RJ. 2012. Pericentric and centromeric transcription: a perfect balance required. Chromosome Res. 20:535-46
    • (2012) Chromosome Res. , vol.20 , pp. 535-546
    • Hall, L.E.1    Mitchell, S.E.2    O'Neill, R.J.3
  • 67
    • 0030910465 scopus 로고    scopus 로고
    • Formation of de novo centromeres and construction of first-generation human artificial microchromosomes
    • Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF. 1997. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat. Genet. 15:345-55
    • (1997) Nat. Genet. , vol.15 , pp. 345-355
    • Harrington, J.J.1    Van Bokkelen, G.2    Mays, R.W.3    Gustashaw, K.4    Willard, H.F.5
  • 69
    • 0034705290 scopus 로고    scopus 로고
    • Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast
    • He X, Asthana S, Sorger PK. 2000. Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast. Cell 101:763-75
    • (2000) Cell , vol.101 , pp. 763-775
    • He, X.1    Asthana, S.2    Sorger, P.K.3
  • 70
    • 0023368541 scopus 로고
    • Genetic manipulation of centromere function
    • Hill A, Bloom K. 1987. Genetic manipulation of centromere function. Mol. Cell. Biol. 7:2397-405
    • (1987) Mol. Cell. Biol. , vol.7 , pp. 2397-2405
    • Hill, A.1    Bloom, K.2
  • 71
    • 0024539335 scopus 로고
    • Acquisition and processing of a conditional dicentric chromosome in Saccharomyces cerevisiae
    • Hill A, Bloom K. 1989. Acquisition and processing of a conditional dicentric chromosome in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:1368-70
    • (1989) Mol. Cell. Biol. , vol.9 , pp. 1368-1370
    • Hill, A.1    Bloom, K.2
  • 72
    • 33646177549 scopus 로고    scopus 로고
    • At the heart of the chromosome: SMC proteins in action
    • Hirano T. 2006. At the heart of the chromosome: SMC proteins in action. Nat. Rev. Mol. Cell Biol. 7:311-22
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 311-322
    • Hirano, T.1
  • 73
    • 71849083574 scopus 로고    scopus 로고
    • Cellular dynamics of tRNAs and their genes
    • Hopper AK, Pai DA, Engelke DR. 2010. Cellular dynamics of tRNAs and their genes. FEBS Lett. 584:310-17
    • (2010) FEBS Lett. , vol.584 , pp. 310-317
    • Hopper, A.K.1    Pai, D.A.2    Engelke, D.R.3
  • 74
    • 84872063204 scopus 로고    scopus 로고
    • The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly
    • Hori T, Shang WH, Takeuchi K, Fukagawa T. 2013. The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J. Cell Biol. 200:45-60
    • (2013) J. Cell Biol. , vol.200 , pp. 45-60
    • Hori, T.1    Shang, W.H.2    Takeuchi, K.3    Fukagawa, T.4
  • 75
    • 79961200841 scopus 로고    scopus 로고
    • WDHD1 modulates the post-transcriptional step of the centromeric silencing pathway
    • Hsieh CL, Lin CL, Liu H, Chang YJ, Shih CJ, et al. 2011. WDHD1 modulates the post-transcriptional step of the centromeric silencing pathway. Nucleic Acids Res. 39:4048-62
    • (2011) Nucleic Acids Res. , vol.39 , pp. 4048-4062
    • Hsieh, C.L.1    Lin, C.L.2    Liu, H.3    Chang, Y.J.4    Shih, C.J.5
  • 76
    • 79151480827 scopus 로고    scopus 로고
    • ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex
    • Hu B, Itoh T, Mishra A, Katoh Y, Chan KL, et al. 2011. ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex. Curr. Biol. 21:12-24
    • (2011) Curr. Biol. , vol.21 , pp. 12-24
    • Hu, B.1    Itoh, T.2    Mishra, A.3    Katoh, Y.4    Chan, K.L.5
  • 78
    • 34250746354 scopus 로고    scopus 로고
    • RNA polymerase i transcription obstructs condensin association with 35S rRNA coding regions and can cause contraction of long repeat in Saccharomyces cerevisiae
    • Johzuka K, Horiuchi T. 2007. RNA polymerase I transcription obstructs condensin association with 35S rRNA coding regions and can cause contraction of long repeat in Saccharomyces cerevisiae. Genes Cells 12:759-71
    • (2007) Genes Cells , vol.12 , pp. 759-771
    • Johzuka, K.1    Horiuchi, T.2
  • 79
    • 63649098077 scopus 로고    scopus 로고
    • The cis element and factors required for condensin recruitment to chromosomes
    • Johzuka K, Horiuchi T. 2009. The cis element and factors required for condensin recruitment to chromosomes. Mol. Cell 34:26-35
    • (2009) Mol. Cell , vol.34 , pp. 26-35
    • Johzuka, K.1    Horiuchi, T.2
  • 80
    • 0014109164 scopus 로고
    • The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells
    • Jokelainen PT. 1967. The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J. Ultrastruct. Res. 19:19-44
    • (1967) J. Ultrastruct. Res. , vol.19 , pp. 19-44
    • Jokelainen, P.T.1
  • 81
    • 79952591477 scopus 로고    scopus 로고
    • Escherichia coli sister chromosome separation includes an abrupt global transition with concomitant release of late-splitting intersister snaps
    • Joshi MC, Bourniquel A, Fisher J, Ho BT, Magnan D, et al. 2011. Escherichia coli sister chromosome separation includes an abrupt global transition with concomitant release of late-splitting intersister snaps. Proc. Natl. Acad. Sci. USA 108:2765-70
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 2765-2770
    • Joshi, M.C.1    Bourniquel, A.2    Fisher, J.3    Ho, B.T.4    Magnan, D.5
  • 82
    • 33747615506 scopus 로고    scopus 로고
    • Entropy-driven spatial organization of highly confined polymers: Lessons for the bacterial chromosome
    • Jun S, Mulder B. 2006. Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome. Proc. Natl. Acad. Sci. USA 103:12388-93
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 12388-12393
    • Jun, S.1    Mulder, B.2
  • 83
    • 77954719357 scopus 로고    scopus 로고
    • Entropy as the driver of chromosome segregation
    • Jun S, Wright A. 2010. Entropy as the driver of chromosome segregation. Nat. Rev. Microbiol. 8:600-7
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 600-607
    • Jun, S.1    Wright, A.2
  • 84
    • 0034700156 scopus 로고    scopus 로고
    • A CBF5 mutation that disrupts nucleolar localization of early tRNA biosynthesis in yeast also suppresses tRNA gene-mediated transcriptional silencing
    • Kendall A, Hull MW, Bertrand E, Good PD, Singer RH, Engelke DR. 2000. A CBF5 mutation that disrupts nucleolar localization of early tRNA biosynthesis in yeast also suppresses tRNA gene-mediated transcriptional silencing. Proc. Natl. Acad. Sci. USA 97:13108-13
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 13108-13113
    • Kendall, A.1    Hull, M.W.2    Bertrand, E.3    Good, P.D.4    Singer, R.H.5    Engelke, D.R.6
  • 85
    • 69949175138 scopus 로고    scopus 로고
    • ADam1-based artificial kinetochore is sufficient to promote chromosome segregation in budding yeast
    • Kiermaier E, Woehrer S, Peng Y, Mechtler K, Westermann S. 2009. ADam1-based artificial kinetochore is sufficient to promote chromosome segregation in budding yeast. Nat. Cell Biol. 11:1109-15
    • (2009) Nat. Cell Biol. , vol.11 , pp. 1109-1115
    • Kiermaier, E.1    Woehrer, S.2    Peng, Y.3    Mechtler, K.4    Westermann, S.5
  • 86
    • 84885135720 scopus 로고    scopus 로고
    • Condensin i associates with structural and gene regulatory regions in vertebrate chromosomes
    • Kim JH, Zhang T, Wong NC, Davidson N, Maksimovic J, et al. 2013. Condensin I associates with structural and gene regulatory regions in vertebrate chromosomes. Nat Commun. 4:2537
    • (2013) Nat Commun. , vol.4 , pp. 2537
    • Kim, J.H.1    Zhang, T.2    Wong, N.C.3    Davidson, N.4    Maksimovic, J.5
  • 87
    • 77957364750 scopus 로고    scopus 로고
    • Control of the flow properties of DNA by topoisomerase II and its targeting inhibitor
    • Kundukad B, van der Maarel JR. 2010. Control of the flow properties of DNA by topoisomerase II and its targeting inhibitor. Biophys. J. 99:1906-15
    • (2010) Biophys. J. , vol.99 , pp. 1906-1915
    • Kundukad, B.1    Van Der, M.J.R.2
  • 88
    • 69949150953 scopus 로고    scopus 로고
    • Recruiting a microtubule-binding complex to DNA directs chromosome segregation in budding yeast
    • Lacefield S, Lau DT, Murray AW. 2009. Recruiting a microtubule-binding complex to DNA directs chromosome segregation in budding yeast. Nat. Cell Biol. 11:1116-20
    • (2009) Nat. Cell Biol. , vol.11 , pp. 1116-1120
    • Lacefield, S.1    Lau, D.T.2    Murray, A.W.3
  • 89
    • 0026013226 scopus 로고
    • A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere
    • Lechner J, Carbon J. 1991. A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64:717-25
    • (1991) Cell , vol.64 , pp. 717-725
    • Lechner, J.1    Carbon, J.2
  • 91
    • 4544281398 scopus 로고    scopus 로고
    • Choreography of the DNA damage response: Spatiotemporal relationships among checkpoint and repair proteins
    • Lisby M, Barlow JH, Burgess RC, Rothstein R. 2004. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118:699-713
    • (2004) Cell , vol.118 , pp. 699-713
    • Lisby, M.1    Barlow, J.H.2    Burgess, R.C.3    Rothstein, R.4
  • 92
    • 33749569228 scopus 로고    scopus 로고
    • Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells
    • Liu ST, Rattner JB, Jablonski SA, Yen TJ. 2006. Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J. Cell Biol. 175:41-53
    • (2006) J. Cell Biol. , vol.175 , pp. 41-53
    • Liu, S.T.1    Rattner, J.B.2    Jablonski, S.A.3    Yen, T.J.4
  • 93
    • 0036896143 scopus 로고    scopus 로고
    • Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis
    • Losada A, Hirano M, Hirano T. 2002. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev. 16:3004-16
    • (2002) Genes Dev. , vol.16 , pp. 3004-3016
    • Losada, A.1    Hirano, M.2    Hirano, T.3
  • 94
    • 33750036679 scopus 로고    scopus 로고
    • Molecular analysis of mitotic chromosome condensation using a quantitative time-resolved fluorescence microscopy assay
    • Maddox PS, Portier N, Desai A, Oegema K. 2006. Molecular analysis of mitotic chromosome condensation using a quantitative time-resolved fluorescence microscopy assay. Proc. Natl. Acad. Sci. USA 103:15097-102
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 15097-15102
    • Maddox, P.S.1    Portier, N.2    Desai, A.3    Oegema, K.4
  • 95
    • 0032415787 scopus 로고    scopus 로고
    • Assay of centromere function using a human artificial chromosome
    • Masumoto H, Ikeno M, Nakano M, Okazaki T, Grimes B, et al. 1998. Assay of centromere function using a human artificial chromosome. Chromosoma 107:406-16
    • (1998) Chromosoma , vol.107 , pp. 406-416
    • Masumoto, H.1    Ikeno, M.2    Nakano, M.3    Okazaki, T.4    Grimes, B.5
  • 96
    • 0000813303 scopus 로고
    • The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes
    • McClintock B. 1938. The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23:315-76
    • (1938) Genetics , vol.23 , pp. 315-376
    • McClintock, B.1
  • 97
    • 0000642462 scopus 로고
    • Induction of instability at selected loci in maize
    • McClintock B. 1953. Induction of instability at selected loci in maize. Genetics 38:579-99
    • (1953) Genetics , vol.38 , pp. 579-599
    • McClintock, B.1
  • 99
    • 0033197708 scopus 로고    scopus 로고
    • The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences
    • Megee PC, Mistrot C, Guacci V, Koshland D. 1999. The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences. Mol. Cell 4:445-50
    • (1999) Mol. Cell , vol.4 , pp. 445-450
    • Megee, P.C.1    Mistrot, C.2    Guacci, V.3    Koshland, D.4
  • 100
    • 67650085179 scopus 로고    scopus 로고
    • Mechanical forces of fission yeast growth
    • Minc N, Boudaoud A, Chang F. 2009. Mechanical forces of fission yeast growth. Curr. Biol. 19:1096-101
    • (2009) Curr. Biol. , vol.19 , pp. 1096-1101
    • Minc, N.1    Boudaoud, A.2    Chang, F.3
  • 101
    • 84884915198 scopus 로고    scopus 로고
    • Structural integrity of centromeric chromatin and faithful chromosome segregation requires Pat1
    • Mishra PK, Ottmann AR, Basrai M. 2013. Structural integrity of centromeric chromatin and faithful chromosome segregation requires Pat1. Genetics 195(2):369-79
    • (2013) Genetics , vol.195 , Issue.2 , pp. 369-379
    • Mishra, P.K.1    Ottmann, A.R.2    Basrai, M.3
  • 102
    • 85027930977 scopus 로고    scopus 로고
    • Popping the cork: Mechanisms of phage genome ejection
    • Molineux IJ, Panja D. 2013. Popping the cork: mechanisms of phage genome ejection. Nat. Rev. Microbiol. 11:194-204
    • (2013) Nat. Rev. Microbiol. , vol.11 , pp. 194-204
    • Molineux, I.J.1    Panja, D.2
  • 103
    • 0019725968 scopus 로고
    • Distribution of kinetochore (centromere) antigen in mammalian cell nuclei
    • Moroi Y, Hartman AL, Nakane PK, Tan EM. 1981. Distribution of kinetochore (centromere) antigen in mammalian cell nuclei. J. Cell Biol. 90:254-59
    • (1981) J. Cell Biol. , vol.90 , pp. 254-259
    • Moroi, Y.1    Hartman, A.L.2    Nakane, P.K.3    Tan, E.M.4
  • 105
    • 84869051116 scopus 로고    scopus 로고
    • The spindle-Assembly checkpoint and the beauty of self-destruction
    • Musacchio A, Ciliberto A. 2012. The spindle-Assembly checkpoint and the beauty of self-destruction. Nat. Struct. Mol. Biol. 19:1059-61
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 1059-1061
    • Musacchio, A.1    Ciliberto, A.2
  • 106
    • 0037451175 scopus 로고    scopus 로고
    • Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae
    • Mythreye K, Bloom KS. 2003. Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae. J. Cell Biol. 160:833-43
    • (2003) J. Cell Biol. , vol.160 , pp. 833-843
    • Mythreye, K.1    Bloom, K.S.2
  • 107
    • 41849114919 scopus 로고    scopus 로고
    • Inactivation of a human kinetochore by specific targeting of chromatin modifiers
    • Nakano M, Cardinale S, Noskov VN, Gassmann R, Vagnarelli P, et al. 2008. Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev. Cell 14:507-22
    • (2008) Dev. Cell , vol.14 , pp. 507-522
    • Nakano, M.1    Cardinale, S.2    Noskov, V.N.3    Gassmann, R.4    Vagnarelli, P.5
  • 108
    • 0000772799 scopus 로고
    • Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast
    • Nakaseko Y, Adachi Y, Funahashi S, Niwa O, Yanagida M. 1986. Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. EMBO J. 5:1011-21
    • (1986) EMBO J. , vol.5 , pp. 1011-1021
    • Nakaseko, Y.1    Adachi, Y.2    Funahashi, S.3    Niwa, O.4    Yanagida, M.5
  • 109
    • 73349127026 scopus 로고    scopus 로고
    • Cohesin: Its roles and mechanisms
    • Nasmyth K, Haering CH. 2009. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43:525-58
    • (2009) Annu. Rev. Genet. , vol.43 , pp. 525-558
    • Nasmyth, K.1    Haering, C.H.2
  • 110
  • 111
    • 70450230347 scopus 로고    scopus 로고
    • Structure-function insights into the yeast Dam1 kinetochore complex
    • Nogales E, Ramey VH. 2009. Structure-function insights into the yeast Dam1 kinetochore complex. J. Cell Sci. 122:3831-36
    • (2009) J. Cell Sci. , vol.122 , pp. 3831-3836
    • Nogales, E.1    Ramey, V.H.2
  • 113
    • 84890238141 scopus 로고    scopus 로고
    • Epigenetically induced paucity of histone H2 A. Z stabilizes fission-yeast ectopic centromeres
    • Ogiyama Y, Ohno Y, Kubota Y, Ishii K. 2013. Epigenetically induced paucity of histone H2 A. Z stabilizes fission-yeast ectopic centromeres. Nat. Struct. Mol. Biol. 20:1397-406
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 1397-1406
    • Ogiyama, Y.1    Ohno, Y.2    Kubota, Y.3    Ishii, K.4
  • 114
    • 80055005108 scopus 로고    scopus 로고
    • Endogenous transcription at the centromere facilitates centromere activity in budding yeast
    • Ohkuni K, Kitagawa K. 2011. Endogenous transcription at the centromere facilitates centromere activity in budding yeast. Curr. Biol. 21:1695-703
    • (2011) Curr. Biol. , vol.21 , pp. 1695-1703
    • Ohkuni, K.1    Kitagawa, K.2
  • 115
    • 84873294945 scopus 로고    scopus 로고
    • Role of transcription at centromeres in budding yeast
    • Ohkuni K, Kitagawa K. 2012. Role of transcription at centromeres in budding yeast. Transcription 3:193-97
    • (2012) Transcription , vol.3 , pp. 193-197
    • Ohkuni, K.1    Kitagawa, K.2
  • 116
    • 0035804685 scopus 로고    scopus 로고
    • The polyrotaxane gel: A topological gel by figure-of-eight cross-links
    • Okumura Y, Ito K. 2001. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv. Mater. 13:485-87
    • (2001) Adv. Mater. , vol.13 , pp. 485-487
    • Okumura, Y.1    Ito, K.2
  • 118
    • 0035911958 scopus 로고    scopus 로고
    • Budding yeast chromosome structure and dynamics during mitosis
    • Pearson CG, Maddox PS, Salmon ED, Bloom K. 2001. Budding yeast chromosome structure and dynamics during mitosis. J. Cell Biol. 152:1255-66
    • (2001) J. Cell Biol. , vol.152 , pp. 1255-1266
    • Pearson, C.G.1    Maddox, P.S.2    Salmon, E.D.3    Bloom, K.4
  • 120
    • 84878188440 scopus 로고    scopus 로고
    • Chromatin insulators: Linking genome organization to cellular function
    • Phillips-Cremins JE, Corces VG. 2013. Chromatin insulators: linking genome organization to cellular function. Mol. Cell 50:461-74
    • (2013) Mol. Cell , vol.50 , pp. 461-474
    • Phillips-Cremins, J.E.1    Corces, V.G.2
  • 122
    • 77649206825 scopus 로고    scopus 로고
    • Uncoupling of satellite DNA and centromeric function in the genus Equus
    • Piras FM, Nergadze SG, Magnani E, Bertoni L, Attolini C, et al. 2010. Uncoupling of satellite DNA and centromeric function in the genus Equus. PLOS Genet. 6:e1000845
    • (2010) PLOS Genet. , vol.6 , pp. e1000845
    • Piras, F.M.1    Nergadze, S.G.2    Magnani, E.3    Bertoni, L.4    Attolini, C.5
  • 123
    • 34248512303 scopus 로고    scopus 로고
    • A DNA-translocating Snf2 molecular motor: Saccharomyces cerevisiae Rdh54 displays processive translocation and extrudes DNA loops
    • Prasad TK, Robertson RB, Visnapuu ML, Chi P, Sung P, Greene EC. 2007. A DNA-translocating Snf2 molecular motor: Saccharomyces cerevisiae Rdh54 displays processive translocation and extrudes DNA loops. J. Mol. Biol. 369:940-53
    • (2007) J. Mol. Biol. , vol.369 , pp. 940-953
    • Prasad, T.K.1    Robertson, R.B.2    Visnapuu, M.L.3    Chi, P.4    Sung, P.5    Greene, E.C.6
  • 124
    • 0020554124 scopus 로고
    • Reversible changes in nucleosome structure and histone H3 accessibility in transcriptionally active and inactive states of rDNA chromatin
    • Prior CP, Cantor CR, Johnson EM, Littau VC, Allfrey VG. 1983. Reversible changes in nucleosome structure and histone H3 accessibility in transcriptionally active and inactive states of rDNA chromatin. Cell 34:1033-42
    • (1983) Cell , vol.34 , pp. 1033-1042
    • Prior, C.P.1    Cantor, C.R.2    Johnson, E.M.3    Littau, V.C.4    Allfrey, V.G.5
  • 125
    • 73349105276 scopus 로고    scopus 로고
    • The kinetochore and the centromere: A working long distance relationship
    • Przewloka MR, Glover DM. 2009. The kinetochore and the centromere: a working long distance relationship. Annu. Rev. Genet. 43:439-65
    • (2009) Annu. Rev. Genet. , vol.43 , pp. 439-465
    • Przewloka, M.R.1    Glover, D.M.2
  • 126
    • 84884289213 scopus 로고    scopus 로고
    • Sequence organization and evolutionary dynamics of Brachypodium-specific centromere retrotransposons
    • Qi LL, Wu JJ, Friebe B, Qian C, Gu YQ, et al. 2013. Sequence organization and evolutionary dynamics of Brachypodium-specific centromere retrotransposons. Chromosome Res. 21:507-21
    • (2013) Chromosome Res. , vol.21 , pp. 507-521
    • Qi, L.L.1    Wu, J.J.2    Friebe, B.3    Qian, C.4    Gu, Y.Q.5
  • 127
    • 77955566957 scopus 로고    scopus 로고
    • Condensins promote chromosome recoiling during early anaphase to complete sister chromatid separation
    • Renshaw MJ, Ward JJ, Kanemaki M, Natsume K, Nedelec FJ, Tanaka TU. 2010. Condensins promote chromosome recoiling during early anaphase to complete sister chromatid separation. Dev. Cell 19:232-44
    • (2010) Dev. Cell , vol.19 , pp. 232-244
    • Renshaw, M.J.1    Ward, J.J.2    Kanemaki, M.3    Natsume, K.4    Nedelec, F.J.5    Tanaka, T.U.6
  • 129
    • 71649104952 scopus 로고    scopus 로고
    • The FEAR network
    • Rock JM, Amon A. 2009. The FEAR network. Curr. Biol. 19:R1063-68
    • (2009) Curr. Biol. , vol.19 , pp. R1063-R1068
    • Rock, J.M.1    Amon, A.2
  • 130
    • 0344252790 scopus 로고
    • A theory of the linear viscoelastic properties of dilute solutions of coiling polymer
    • Rouse PE. 1953. A theory of the linear viscoelastic properties of dilute solutions of coiling polymer. J. Chem. Phys. 21:1272-80
    • (1953) J. Chem. Phys. , vol.21 , pp. 1272-1280
    • Rouse, P.E.1
  • 132
    • 0016686764 scopus 로고
    • Pressure-induced depolymerization of spindle microtubules. II. Thermodynamics of in vivo spindle assembly
    • Salmon ED. 1975. Pressure-induced depolymerization of spindle microtubules. II. Thermodynamics of in vivo spindle assembly. J. Cell Biol. 66:114-27
    • (1975) J. Cell Biol. , vol.66 , pp. 114-127
  • 133
    • 0017121113 scopus 로고
    • Pressure-induced depolymerization of spindle microtubules. III. Differential stability in HeLa cells
    • Salmon ED, Goode D, Maugel TK, Bonar DB. 1976. Pressure-induced depolymerization of spindle microtubules. III. Differential stability in HeLa cells. J. Cell Biol. 69:443-54
    • (1976) J. Cell Biol. , vol.69 , pp. 443-454
    • Salmon, E.D.1    Goode, D.2    Maugel, T.K.3    Bonar, D.B.4
  • 134
    • 84861889670 scopus 로고    scopus 로고
    • Methylation of CenH3 arginine 37 regulates kinetochore integrity and chromosome segregation
    • Samel A, Cuomo A, Bonaldi T, Ehrenhofer-Murray AE. 2012. Methylation of CenH3 arginine 37 regulates kinetochore integrity and chromosome segregation. Proc. Natl. Acad. Sci. USA 109:9029-34
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 9029-9034
    • Samel, A.1    Cuomo, A.2    Bonaldi, T.3    Ehrenhofer-Murray, A.E.4
  • 135
    • 69949086762 scopus 로고    scopus 로고
    • Human condensin function is essential for centromeric chromatin assembly and proper sister kinetochore orientation
    • Samoshkin A, Arnaoutov A, Jansen LE, Ouspenski I, Dye L, et al. 2009. Human condensin function is essential for centromeric chromatin assembly and proper sister kinetochore orientation. PLOS ONE 4:e6831
    • (2009) PLOS ONE , vol.4 , pp. e6831
    • Samoshkin, A.1    Arnaoutov, A.2    Jansen, L.E.3    Ouspenski, I.4    Dye, L.5
  • 136
    • 84860279272 scopus 로고    scopus 로고
    • Epigenetic inactivation and subsequent heterochromatinization of a centromere stabilize dicentric chromosomes
    • Sato H, Masuda F, Takayama Y, Takahashi K, Saitoh S. 2012. Epigenetic inactivation and subsequent heterochromatinization of a centromere stabilize dicentric chromosomes. Curr. Biol. 22:658-67
    • (2012) Curr. Biol. , vol.22 , pp. 658-667
    • Sato, H.1    Masuda, F.2    Takayama, Y.3    Takahashi, K.4    Saitoh, S.5
  • 137
    • 0026638269 scopus 로고
    • Kinesin-related proteins required for structural integrity of the mitotic spindle
    • Saunders WS, Hoyt MA.
    • Saunders WS, Hoyt MA. 1992. Kinesin-related proteins required for structural integrity of the mitotic spindle. Cell 70:451-58
    • (1992) Cell , vol.70 , pp. 451-458
  • 138
    • 0028890381 scopus 로고
    • Saccharomyces cerevisiae kinesin-And dynein-related proteins required for anaphase chromosome segregation
    • Saunders WS, Koshland D, Eshel D, Gibbons IR, Hoyt MA. 1995. Saccharomyces cerevisiae kinesin-And dynein-related proteins required for anaphase chromosome segregation. J. Cell Biol. 128:617-24
    • (1995) J. Cell Biol. , vol.128 , pp. 617-624
    • Saunders, W.S.1    Koshland, D.2    Eshel, D.3    Gibbons, I.R.4    Hoyt, M.A.5
  • 139
    • 84869036026 scopus 로고    scopus 로고
    • The kinetochore-bound Ska1 complex tracks depolymerizing microtubules and binds to curved protofilaments
    • Schmidt JC, Arthanari H, Boeszoermenyi A, Dashkevich NM, Wilson-Kubalek EM, et al. 2012. The kinetochore-bound Ska1 complex tracks depolymerizing microtubules and binds to curved protofilaments. Dev. Cell 23:968-80
    • (2012) Dev. Cell , vol.23 , pp. 968-980
    • Schmidt, J.C.1    Arthanari, H.2    Boeszoermenyi, A.3    Dashkevich, N.M.4    Wilson-Kubalek, E.M.5
  • 140
    • 84892988468 scopus 로고    scopus 로고
    • Neocentromeres: A place for everything and everything in its place
    • Scott KC, Sullivan BA. 2014. Neocentromeres: a place for everything and everything in its place. Trends Genet. 30:66-74
    • (2014) Trends Genet. , vol.30 , pp. 66-74
    • Scott, K.C.1    Sullivan, B.A.2
  • 141
    • 84875606455 scopus 로고    scopus 로고
    • Chromosome engineering allows the efficient isolation of vertebrate neocentromeres
    • Shang WH, Hori T, Martins NM, Toyoda A, Misu S, et al. 2013. Chromosome engineering allows the efficient isolation of vertebrate neocentromeres. Dev. Cell 24:635-48
    • (2013) Dev. Cell , vol.24 , pp. 635-648
    • Shang, W.H.1    Hori, T.2    Martins, N.M.3    Toyoda, A.4    Misu, S.5
  • 142
    • 79960235249 scopus 로고    scopus 로고
    • Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring
    • Stephens AD, Haase J, Vicci L, Taylor RM 2nd, Bloom K. 2011. Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring. J. Cell Biol. 193:1167-80
    • (2011) J. Cell Biol. , vol.193 , pp. 1167-1180
    • Stephens, A.D.1    Haase, J.2    Vicci, L.3    Taylor, I.I.R.M.4    Bloom, K.5
  • 144
    • 77957344530 scopus 로고    scopus 로고
    • Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes
    • Stimpson KM, Song IY, Jauch A, Holtgreve-Grez H, Hayden KE, et al. 2010. Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. PLOS Genet. 6:1-19
    • (2010) PLOS Genet. , vol.6 , pp. 1-19
    • Stimpson, K.M.1    Song, I.Y.2    Jauch, A.3    Holtgreve-Grez, H.4    Hayden, K.E.5
  • 145
    • 0028946805 scopus 로고
    • A mutation in CSE4, an essential gene encoding a novel chromatin-Associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis
    • Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes M. 1995. A mutation in CSE4, an essential gene encoding a novel chromatin-Associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 9:573-86
    • (1995) Genes Dev. , vol.9 , pp. 573-586
    • Stoler, S.1    Keith, K.C.2    Curnick, K.E.3    Fitzgerald-Hayes, M.4
  • 146
    • 0030474371 scopus 로고    scopus 로고
    • GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion
    • Straight AF, Belmont AS, Robinett CC, Murray AW. 1996. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6:1599-608
    • (1996) Curr. Biol. , vol.6 , pp. 1599-1608
    • Straight, A.F.1    Belmont, A.S.2    Robinett, C.C.3    Murray, A.W.4
  • 148
    • 65549149524 scopus 로고    scopus 로고
    • Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation
    • Sullivan NL, Marquis KA, Rudner DZ. 2009. Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 137:697-707
    • (2009) Cell , vol.137 , pp. 697-707
    • Sullivan, N.L.1    Marquis, K.A.2    Rudner, D.Z.3
  • 149
    • 79951860623 scopus 로고    scopus 로고
    • Micromechanics of human mitotic chromosomes
    • Sun M, Kawamura R, Marko JF. 2011. Micromechanics of human mitotic chromosomes. Phys. Biol. 8:015003
    • (2011) Phys. Biol. , vol.8 , pp. 015003
    • Sun, M.1    Kawamura, R.2    Marko, J.F.3
  • 150
    • 84861959565 scopus 로고    scopus 로고
    • Molecular architecture of vertebrate kinetochores
    • Takeuchi K, Fukagawa T. 2012. Molecular architecture of vertebrate kinetochores. Exp. Cell Res. 318:1367-74
    • (2012) Exp. Cell Res. , vol.318 , pp. 1367-1374
    • Takeuchi, K.1    Fukagawa, T.2
  • 151
    • 0033578935 scopus 로고    scopus 로고
    • Identification of cohesin association sites at centromeres and along chromosome arms
    • Tanaka T, Cosma MP, Wirth K, Nasmyth K. 1999. Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98:847-58
    • (1999) Cell , vol.98 , pp. 847-858
    • Tanaka, T.1    Cosma, M.P.2    Wirth, K.3    Nasmyth, K.4
  • 152
    • 0000818409 scopus 로고    scopus 로고
    • Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation
    • Tanaka T, Fuchs J, Loidl J, Nasmyth K. 2000. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nat. Cell Biol. 2:492-99
    • (2000) Nat. Cell Biol. , vol.2 , pp. 492-499
    • Tanaka, T.1    Fuchs, J.2    Loidl, J.3    Nasmyth, K.4
  • 153
    • 0011319362 scopus 로고
    • Brownian and saltatory movements of cytoplasmic granules and the movement of anaphase chromosomes
    • New York: Interscience
    • Taylor EW. 1965. Brownian and saltatory movements of cytoplasmic granules and the movement of anaphase chromosomes. Proc. Int. Congr. Rheol. Symp. Biorheol. 4th, Providence, RI, pp. 175-91. New York: Interscience
    • (1965) Proc. Int. Congr. Rheol. Symp. Biorheol. 4th, Providence, RI , pp. 175-191
    • Taylor, E.W.1
  • 154
    • 84875973583 scopus 로고    scopus 로고
    • Efficient neocentromere formation is suppressed by gene conversion to maintain centromere function at native physical chromosomal loci in Candida albicans
    • Thakur J, Sanyal K. 2013. Efficient neocentromere formation is suppressed by gene conversion to maintain centromere function at native physical chromosomal loci in Candida albicans. Genome Res. 23:638-52
    • (2013) Genome Res. , vol.23 , pp. 638-652
    • Thakur, J.1    Sanyal, K.2
  • 156
    • 7744220271 scopus 로고    scopus 로고
    • On the coarse-graining of polymers into bead-spring chains
    • Underhill PT, Doyle PS. 2004. On the coarse-graining of polymers into bead-spring chains. J. Non-Newton. Fluid Mech. 122:3-31
    • (2004) J. Non-Newton. Fluid Mech. , vol.122 , pp. 3-31
    • Underhill, P.T.1    Doyle, P.S.2
  • 158
    • 84875599678 scopus 로고    scopus 로고
    • The KMNprotein network: Chief conductors of the kinetochore orchestra
    • Varma D, Salmon ED. 2012. The KMNprotein network: chief conductors of the kinetochore orchestra. J. Cell Sci. 125:5927-36
    • (2012) J. Cell Sci. , vol.125 , pp. 5927-5936
    • Varma, D.1    Salmon, E.D.2
  • 159
    • 84884170422 scopus 로고    scopus 로고
    • Spindle assembly checkpoint proteins are positioned close to core microtubule attachment sites at kinetochores
    • Varma D, Wan X, Cheerambathur D, Gassmann R, Suzuki A, et al. 2013. Spindle assembly checkpoint proteins are positioned close to core microtubule attachment sites at kinetochores. J. Cell Biol. 202:735-46
    • (2013) J. Cell Biol. , vol.202 , pp. 735-746
    • Varma, D.1    Wan, X.2    Cheerambathur, D.3    Gassmann, R.4    Suzuki, A.5
  • 160
    • 84864019112 scopus 로고    scopus 로고
    • Spatiotemporal dynamics of Spc105 regulates the assembly of the Drosophila kinetochore
    • Venkei Z, Przewloka MR, Ladak Y, Albadri S, Sossick A, et al. 2012. Spatiotemporal dynamics of Spc105 regulates the assembly of the Drosophila kinetochore. Open Biol. 2:110032
    • (2012) Open Biol. , vol.2 , pp. 110032
    • Venkei, Z.1    Przewloka, M.R.2    Ladak, Y.3    Albadri, S.4    Sossick, A.5
  • 163
  • 165
    • 0034721656 scopus 로고    scopus 로고
    • Two distinct pathways removemammalian cohesin from chromosome arms in prophase and from centromeres in anaphase
    • Waizenegger IC, Hauf S, Meinke A, Peters JM. 2000. Two distinct pathways removemammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103:399-410
    • (2000) Cell , vol.103 , pp. 399-410
    • Waizenegger, I.C.1    Hauf, S.2    Meinke, A.3    Peters, J.M.4
  • 166
    • 84895067831 scopus 로고    scopus 로고
    • The SMC condensin complex is required for origin segregation in Bacillus subtilis
    • Wang X, Tang OW, Riley EP, Rudner DZ. 2014. The SMC condensin complex is required for origin segregation in Bacillus subtilis. Curr. Biol. 24:287-92
    • (2014) Curr. Biol. , vol.24 , pp. 287-292
    • Wang, X.1    Tang, O.W.2    Riley, E.P.3    Rudner, D.Z.4
  • 167
    • 33646199189 scopus 로고    scopus 로고
    • Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression
    • Watrin E, Schleiffer A, Tanaka K, Eisenhaber F, Nasmyth K, Peters JM. 2006. Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression. Curr. Biol. 16:863-74
    • (2006) Curr. Biol. , vol.16 , pp. 863-874
    • Watrin, E.1    Schleiffer, A.2    Tanaka, K.3    Eisenhaber, F.4    Nasmyth, K.5    Peters, J.M.6
  • 169
    • 77953494844 scopus 로고    scopus 로고
    • Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm
    • Weber SC, Spakowitz AJ, Theriot JA. 2010. Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys. Rev. Lett. 104:238102
    • (2010) Phys. Rev. Lett. , vol.104 , pp. 238102
    • Weber, S.C.1    Spakowitz, A.J.2    Theriot, J.A.3
  • 170
    • 84860807645 scopus 로고    scopus 로고
    • Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci
    • Weber SC, Spakowitz AJ, Theriot JA. 2012. Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci. Proc. Natl. Acad. Sci. USA 109:7338-43
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 7338-7343
    • Weber, S.C.1    Spakowitz, A.J.2    Theriot, J.A.3
  • 171
    • 77954819972 scopus 로고    scopus 로고
    • Subdiffusive motion of a polymer composed of subdiffusive monomers
    • Weber SC, Theriot JA, Spakowitz AJ. 2010. Subdiffusive motion of a polymer composed of subdiffusive monomers. Phys. Rev. E 82:011913
    • (2010) Phys. Rev. E , vol.82 , pp. 011913
    • Weber, S.C.1    Theriot, J.A.2    Spakowitz, A.J.3
  • 172
    • 55349099213 scopus 로고    scopus 로고
    • Toward a molecular structure of the eukaryotic kinetochore
    • Welburn JP, Cheeseman IM. 2008. Toward a molecular structure of the eukaryotic kinetochore. Dev. Cell 15:645-55
    • (2008) Dev. Cell , vol.15 , pp. 645-655
    • Welburn, J.P.1    Cheeseman, I.M.2
  • 174
    • 84879239743 scopus 로고    scopus 로고
    • Functions of the centromere and kinetochore in chromosome segregation
    • Westhorpe FG, Straight AF. 2013. Functions of the centromere and kinetochore in chromosome segregation. Curr. Opin. Cell Biol. 25:334-40
    • (2013) Curr. Opin. Cell Biol. , vol.25 , pp. 334-340
    • Westhorpe, F.G.1    Straight, A.F.2
  • 175
    • 38149062718 scopus 로고    scopus 로고
    • Pericentric chromatin is organized into an intramolecular loop in mitosis
    • Yeh E, Haase J, Paliulis LV, Joglekar A, Bond L, et al. 2008. Pericentric chromatin is organized into an intramolecular loop in mitosis. Curr. Biol. 18:81-90
    • (2008) Curr. Biol. , vol.18 , pp. 81-90
    • Yeh, E.1    Haase, J.2    Paliulis, L.V.3    Joglekar, A.4    Bond, L.5
  • 176
    • 0029155542 scopus 로고
    • Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae
    • Yeh E, Skibbens RV, Cheng JW, Salmon ED, Bloom K. 1995. Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae. J. Cell Biol. 130:687-700
    • (1995) J. Cell Biol. , vol.130 , pp. 687-700
    • Yeh, E.1    Skibbens, R.V.2    Cheng, J.W.3    Salmon, E.D.4    Bloom, K.5
  • 177
    • 56349157125 scopus 로고    scopus 로고
    • Viscoelasticity of entangled a;-phage DNA solutions
    • Zhu X, Kundukad B, van der Maarel JR. 2008. Viscoelasticity of entangled a;-phage DNA solutions. J. Chem. Phys. 129:185103
    • (2008) J. Chem. Phys. , vol.129 , pp. 185103
    • Zhu, X.1    Kundukad, B.2    Van Der Maarel, J.R.3
  • 178
    • 36849141559 scopus 로고
    • Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence and dielectric loss
    • Zimm BH. 1956. Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J. Chem. Phys. 24:269-78
    • (1956) J. Chem. Phys. , vol.24 , pp. 269-278
    • Zimm, B.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.