메뉴 건너뛰기




Volumn 20, Issue 1, 2007, Pages 129-138

Robust Bayesian clustering

Author keywords

Approximate inference; Bayesian learning; Clustering; Density estimation; Graphical models; Mixture models; Model selection; Robustness to outliers; Student t distribution; Variational inference

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; GRAPHIC METHODS; MATHEMATICAL MODELS; PARAMETER ESTIMATION; ROBUSTNESS (CONTROL SYSTEMS);

EID: 33845659662     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2006.06.009     Document Type: Article
Times cited : (88)

References (15)
  • 1
    • 33845662801 scopus 로고    scopus 로고
    • Archambeau, C., Lee, J. A., & Verleysen, M. (2003). On the convergence problems of the EM algorithm for finite Gaussian mixtures. In Eleventh European symposium on artificial neural networks. pp. 99-106. D-side
  • 2
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • Solla S.A., Leen T.K., and Müller K.-R. (Eds), MIT Press
    • Attias H. A variational Bayesian framework for graphical models. In: Solla S.A., Leen T.K., and Müller K.-R. (Eds). Advances in neural information processing systems 12 (1999), MIT Press 209-215
    • (1999) Advances in neural information processing systems 12 , pp. 209-215
    • Attias, H.1
  • 5
    • 84899003086 scopus 로고    scopus 로고
    • Propagation algorithms for variational bayesian learning
    • Leen T.K., Dietterich T.G., and Tresp V. (Eds), MIT Press
    • Ghahramani Z., and Beal M.J. Propagation algorithms for variational bayesian learning. In: Leen T.K., Dietterich T.G., and Tresp V. (Eds). Advances in neural information processing systems 13 (2001), MIT Press 507-513
    • (2001) Advances in neural information processing systems 13 , pp. 507-513
    • Ghahramani, Z.1    Beal, M.J.2
  • 7
    • 0002864973 scopus 로고
    • ML estimation of the t distribution using EM and its extensions, ECM and ECME
    • Liu C., and Rubin D.B. ML estimation of the t distribution using EM and its extensions, ECM and ECME. Statistica Sinica 5 (1995) 19-39
    • (1995) Statistica Sinica , vol.5 , pp. 19-39
    • Liu, C.1    Rubin, D.B.2
  • 9
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen E. On estimation of a probability density function and mode. Annals of Mathematical Statistics 33 (1962) 1065-1076
    • (1962) Annals of Mathematical Statistics , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 10
    • 0041407143 scopus 로고    scopus 로고
    • Robust mixture modelling using thet distribution
    • Peel D., and McLachlan G.J. Robust mixture modelling using thet distribution. Statistics and Computing 10 (2000) 339-348
    • (2000) Statistics and Computing , vol.10 , pp. 339-348
    • Peel, D.1    McLachlan, G.J.2
  • 11
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with unknown number of components
    • Richardson S., and Green P. On Bayesian analysis of mixtures with unknown number of components. Journal of the Royal Statistical Society B 59 (1997) 731-792
    • (1997) Journal of the Royal Statistical Society B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.2
  • 12
    • 0036568162 scopus 로고    scopus 로고
    • Robust clustering by deterministic agglomeration EM of mixtures of multivariate t-distributions
    • Shoham S. Robust clustering by deterministic agglomeration EM of mixtures of multivariate t-distributions. Pattern Recognition 35 5 (2002) 1127-1142
    • (2002) Pattern Recognition , vol.35 , Issue.5 , pp. 1127-1142
    • Shoham, S.1
  • 13
    • 15844362098 scopus 로고    scopus 로고
    • Robust Bayesian mixture modelling
    • Svensén M., and Bishop C.M. Robust Bayesian mixture modelling. Neurocomputing 64 (2005) 235-252
    • (2005) Neurocomputing , vol.64 , pp. 235-252
    • Svensén, M.1    Bishop, C.M.2
  • 14
    • 0032029288 scopus 로고    scopus 로고
    • Deterministic annealing EM algorithm
    • Ueda N., and Nakano R. Deterministic annealing EM algorithm. Neural Networks 11 (1998) 271-282
    • (1998) Neural Networks , vol.11 , pp. 271-282
    • Ueda, N.1    Nakano, R.2
  • 15
    • 0742324924 scopus 로고    scopus 로고
    • Singularities in mixture models and upper bounds of stochastic complexity
    • Yamazaki K., and Watanabe S. Singularities in mixture models and upper bounds of stochastic complexity. Neural Networks 16 7 (2003) 1029-1038
    • (2003) Neural Networks , vol.16 , Issue.7 , pp. 1029-1038
    • Yamazaki, K.1    Watanabe, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.