메뉴 건너뛰기




Volumn 25, Issue 6, 2008, Pages 131-146

The variational approximation for Bayesian inference: Life after the EM algorithm

Author keywords

Approximation theory; Bayes methods; Bayes theorem; Bayesian inference; Bayesian methods; Belief networks; Computational modeling; Estimation; History; Inference algorithms; Inference mechanisms; Laplace method; Random variables; Signal processing; Signal processing algorithms; Variational approximation; Variational techniques

Indexed keywords

APPROXIMATION ALGORITHMS; APPROXIMATION THEORY; ASYMPTOTIC ANALYSIS; BAYESIAN NETWORKS; COMPUTATION THEORY; ESTIMATION; HISTORY; KNOWLEDGE BASED SYSTEMS; LAPLACE TRANSFORMS; RANDOM VARIABLES; SIGNAL PROCESSING; VARIATIONAL TECHNIQUES;

EID: 85032751295     PISSN: 10535888     EISSN: None     Source Type: Journal    
DOI: 10.1109/MSP.2008.929620     Document Type: Article
Times cited : (812)

References (31)
  • 1
    • 0011082596 scopus 로고
    • Thomas Bayes's inference
    • S.M. Stigler, "Thomas Bayes's inference," J. Roy. Statis. Soc. A vol. 145, pp. 250-258, 1982.
    • (1982) J. Roy. Statis. Soc. A , vol.145 , pp. 250-258
    • Stigler, S.M.1
  • 3
    • 84972496616 scopus 로고
    • Laplace's 1774 memoir on inverse probability
    • S.M. Stigler, "Laplace's 1774 memoir on inverse probability," Statist. Sci., vol. 1, no. 3, pp. 359-363, 1986.
    • (1986) Statist. Sci , vol.1 , Issue.3 , pp. 359-363
    • Stigler, S.M.1
  • 4
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A. Dempster, N. Laird, and D. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. Roy. Statis. Soc. A, vol. 39, no. 1, pp. 1-38, 1977.
    • (1977) J. Roy. Statis. Soc. A , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 5
    • 0001465863 scopus 로고
    • Positron emission tomographic images and expectation maximization: A VLSI architecture for multiple iterations per second
    • W. Jones, L. Byars, and M. Casey, "Positron emission tomographic images and expectation maximization: A VLSI architecture for multiple iterations per second," IEEE Trans. Nuclear Sci., vol. 35, no. 1, pp. 620-624, 1988.
    • (1988) IEEE Trans. Nuclear Sci , vol.35 , Issue.1 , pp. 620-624
    • Jones, W.1    Byars, L.2    Casey, M.3
  • 6
    • 0006751831 scopus 로고
    • Bayesian reconstruction in emission computerized tomography
    • Z. Liang and H. Hart, "Bayesian reconstruction in emission computerized tomography," IEEE Trans. Nuclear Sci., vol. 35, no. 1, pp. 788-792, 1988.
    • (1988) IEEE Trans. Nuclear Sci , vol.35 , Issue.1 , pp. 788-792
    • Liang, Z.1    Hart, H.2
  • 7
    • 0001371071 scopus 로고
    • A generalized theory of the combination of observations so as to obtain the best result
    • S. Newcomb, "A generalized theory of the combination of observations so as to obtain the best result," Amer. J. Math., vol. 8, pp. 343-366, 1886.
    • (1886) Amer. J. Math , vol.8 , pp. 343-366
    • Newcomb, S.1
  • 9
    • 0030287048 scopus 로고    scopus 로고
    • The EM algorithm in signal processing
    • T.K. Moon, "The EM algorithm in signal processing," IEEE Signal Process. Mag., vol. 13, no. 6, pp. 47-60, 1996.
    • (1996) IEEE Signal Process. Mag , vol.13 , Issue.6 , pp. 47-60
    • Moon, T.K.1
  • 12
    • 0037262814 scopus 로고    scopus 로고
    • An introduction to MCMC for machine learning
    • C. Andrieu, N. de Freitas, A. Doucet, and M. Jordan, "An introduction to MCMC for machine learning," Mach. Learn., vol. 50, no. 1, pp. 5-43, 2003.
    • (2003) Mach. Learn , vol.50 , Issue.1 , pp. 5-43
    • Andrieu, C.1    de Freitas, N.2    Doucet, A.3    Jordan, M.4
  • 16
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse and other variants
    • M.I. Jordan, Ed. Cambridge, MA: MIT Press
    • R.M. Neal and G.E. Hinton, "A view of the EM algorithm that justifies incremental, sparse and other variants," in Learning in Graphical Models, M.I. Jordan, Ed. Cambridge, MA: MIT Press, 1998, pp. 355-368.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 19
    • 0010687311 scopus 로고    scopus 로고
    • Variational methods for inference and learning in graphical models,
    • Ph.D. dissertation, Dept. Elect. Eng. Comp. Sci, MIT
    • T.S. Jaakkola, "Variational methods for inference and learning in graphical models," Ph.D. dissertation, Dept. Elect. Eng. Comp. Sci., MIT, 1997.
    • (1997)
    • Jaakkola, T.S.1
  • 20
    • 0000935895 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. Jordan, Ed, Cambridge, MA: MIT Press
    • M. Jordan, Z. Gharamani, T. Jaakkola, and L. Saul, "An introduction to variational methods for graphical models," in Learning in Graphical Models, M. Jordan, Ed., Cambridge, MA: MIT Press, 1998, pp. 105-162.
    • (1998) Learning in Graphical Models , pp. 105-162
    • Jordan, M.1    Gharamani, Z.2    Jaakkola, T.3    Saul, L.4
  • 23
    • 33749183385 scopus 로고    scopus 로고
    • Bayesian restoration using a new nonstationary edge preserving image prior
    • Oct
    • G. Chantas, N. Galatsanos, and A. Likas, "Bayesian restoration using a new nonstationary edge preserving image prior," IEEE Trans. Image Processing, vol. 15, no. 10, pp. 2987-2997, Oct. 2006.
    • (2006) IEEE Trans. Image Processing , vol.15 , Issue.10 , pp. 2987-2997
    • Chantas, G.1    Galatsanos, N.2    Likas, A.3
  • 24
    • 34347404094 scopus 로고    scopus 로고
    • Super resolution based on fast registration and maximum a posteriori reconstruction
    • July
    • G. Chantas, N. Galatsanos, and N. Woods, "Super resolution based on fast registration and maximum a posteriori reconstruction," IEEE Trans. Image Processing, vol. 16, no. 7, pp. 1821-1830, July 2007.
    • (2007) IEEE Trans. Image Processing , vol.16 , Issue.7 , pp. 1821-1830
    • Chantas, G.1    Galatsanos, N.2    Woods, N.3
  • 25
    • 48149086764 scopus 로고    scopus 로고
    • Variational Bayesian Blind Image Deconvolution with Student-T Priors
    • San Antonio, TX, Sept
    • D. Tzikas, A. Likas, and N. Galatsanos, "Variational Bayesian Blind Image Deconvolution with Student-T Priors," in Proc. IEEE Int. Conf. Image Processing, (ICIP), San Antonio, TX, Sept. 2007, vol. 1, pp. 109-112.
    • (2007) Proc. IEEE Int. Conf. Image Processing, (ICIP) , vol.1 , pp. 109-112
    • Tzikas, D.1    Likas, A.2    Galatsanos, N.3
  • 26
    • 39449114855 scopus 로고    scopus 로고
    • New additive watermark detectors based on a hierarchical spatially adaptive image model
    • Mar
    • A. Mairgiotis, N. Galatsanos, and Y. Yang, "New additive watermark detectors based on a hierarchical spatially adaptive image model," IEEE Trans. Information Forensics and Security, vol. 3, no. 1, pp. 29-37, Mar. 2008.
    • (2008) IEEE Trans. Information Forensics and Security , vol.3 , Issue.1 , pp. 29-37
    • Mairgiotis, A.1    Galatsanos, N.2    Yang, Y.3
  • 27
    • 84898964031 scopus 로고    scopus 로고
    • A Variational Bayesian Framework for Graphical Models
    • MIT Press
    • H. Attias, "A Variational Bayesian Framework for Graphical Models," Proc. NIPS 12, MIT Press, 2000, pp. 209-216.
    • (2000) Proc. NIPS 12 , pp. 209-216
    • Attias, H.1
  • 28
    • 4043061882 scopus 로고    scopus 로고
    • Variational bayesian model selection for mixture distributions
    • Jan
    • A. Corduneanu and C. Bishop, "Variational bayesian model selection for mixture distributions," in Proc. AI and Statistics Conf., Jan. 2001, pp. 27-34.
    • (2001) Proc. AI and Statistics Conf , pp. 27-34
    • Corduneanu, A.1    Bishop, C.2
  • 29
    • 34248648503 scopus 로고    scopus 로고
    • Unsupervised learning of gaussian mixtures based on variational component splitting
    • Mar
    • C. Constantinopoulos and A. Likas, "Unsupervised learning of gaussian mixtures based on variational component splitting," IEEE Trans. Neural Networks, vol. 18, no. 3, pp. 745-755, Mar. 2007.
    • (2007) IEEE Trans. Neural Networks , vol.18 , Issue.3 , pp. 745-755
    • Constantinopoulos, C.1    Likas, A.2
  • 30
    • 15344351001 scopus 로고    scopus 로고
    • A spatially-constrained mixture model for image segmentation
    • K. Blekas, A. Likas, N. Galatsanos, and I.E. Lagaris, "A spatially-constrained mixture model for image segmentation," IEEE Trans. Neural Networks, vol. 16, no. 2, pp. 494-498, 2005.
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.2 , pp. 494-498
    • Blekas, K.1    Likas, A.2    Galatsanos, N.3    Lagaris, I.E.4
  • 31
    • 34047208285 scopus 로고    scopus 로고
    • A class-adaptive spatially variant mixture model for image segmentation
    • Apr
    • C. Nikou, N. Galatsanos, and A. Likas, "A class-adaptive spatially variant mixture model for image segmentation," IEEE Trans. Image Processing, vol. 16, no. 4, pp. 1121-1130, Apr. 2007.
    • (2007) IEEE Trans. Image Processing , vol.16 , Issue.4 , pp. 1121-1130
    • Nikou, C.1    Galatsanos, N.2    Likas, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.