-
1
-
-
84898964031
-
A variational Bayesian framework for graphical models
-
Leen T., et al. (Ed), MIT Press, Cambridge, MA
-
Attias H. A variational Bayesian framework for graphical models. In: Leen T., et al. (Ed). Advances in neural inf. proc. systems NIPS-12 (2000), MIT Press, Cambridge, MA 209-215
-
(2000)
Advances in neural inf. proc. systems NIPS-12
, pp. 209-215
-
-
Attias, H.1
-
2
-
-
39649119743
-
-
Beal, M. 2003. Variational algorithms for approximate Bayesian inference. Ph.D. Thesis. London, UK: Gatsby Computational Neuroscience Unit, University College
-
Beal, M. 2003. Variational algorithms for approximate Bayesian inference. Ph.D. Thesis. London, UK: Gatsby Computational Neuroscience Unit, University College
-
-
-
-
3
-
-
0007725224
-
Variational relevance vector machines
-
Boutilier C., and Goldszmidt M. (Eds), Morgan Kaufmann, San Mateo, CA
-
Bishop C.M., and Tipping M.E. Variational relevance vector machines. In: Boutilier C., and Goldszmidt M. (Eds). Proc. 16th conf. on uncertainty in artificial intelligence (2000), Morgan Kaufmann, San Mateo, CA 46-53
-
(2000)
Proc. 16th conf. on uncertainty in artificial intelligence
, pp. 46-53
-
-
Bishop, C.M.1
Tipping, M.E.2
-
5
-
-
3543070663
-
Fisher scoring and a mixture of modes approach for approximate inference and learning in nonlinear state space models
-
Kearns M.S., Solla S.A., and Cohn D.A. (Eds), MIT Press, Cambridge, MA
-
Briegel T., and Tresp V. Fisher scoring and a mixture of modes approach for approximate inference and learning in nonlinear state space models. In: Kearns M.S., Solla S.A., and Cohn D.A. (Eds). Advances in neural inf. proc. systems NIPS-11 (1999), MIT Press, Cambridge, MA 403-409
-
(1999)
Advances in neural inf. proc. systems NIPS-11
, pp. 403-409
-
-
Briegel, T.1
Tresp, V.2
-
6
-
-
27744490126
-
Constructing Bayesian formulations of sparse kernel learning methods
-
Cawley G.C., and Talbot N.L.C. Constructing Bayesian formulations of sparse kernel learning methods. Neural Networks 18 5-6 (2005) 674-683
-
(2005)
Neural Networks
, vol.18
, Issue.5-6
, pp. 674-683
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
8
-
-
0039770574
-
Hierarchical Bayesian-Kalman models for regularisation and ARD in sequential learning
-
de Freitas J.F.G., Niranjan M., and Gee A.H. Hierarchical Bayesian-Kalman models for regularisation and ARD in sequential learning. Neural Computation 12 4 (2000) 933-953
-
(2000)
Neural Computation
, vol.12
, Issue.4
, pp. 933-953
-
-
de Freitas, J.F.G.1
Niranjan, M.2
Gee, A.H.3
-
10
-
-
84958972434
-
A variational approach to robust regression
-
Dorffner G., Bischof H., and Hornik K. (Eds), Springer, Berlin
-
Faul A., and Tipping M.E. A variational approach to robust regression. In: Dorffner G., Bischof H., and Hornik K. (Eds). Proc. int. conf. artificial neural networks (2001), Springer, Berlin 95-102
-
(2001)
Proc. int. conf. artificial neural networks
, pp. 95-102
-
-
Faul, A.1
Tipping, M.E.2
-
11
-
-
84899003086
-
Propagation algorithms for variational Bayesian learning
-
Leen T.K., Dietterich T., and Tresp V. (Eds), MIT Press, Cambridge, MA
-
Ghahramani Z., and Beal M. Propagation algorithms for variational Bayesian learning. In: Leen T.K., Dietterich T., and Tresp V. (Eds). Advances in neural inf. proc. systems NIPS-13 (2001), MIT Press, Cambridge, MA 507-513
-
(2001)
Advances in neural inf. proc. systems NIPS-13
, pp. 507-513
-
-
Ghahramani, Z.1
Beal, M.2
-
13
-
-
0038563987
-
Diagnostics for use with regression recursive residuals
-
Hawkins D.M. Diagnostics for use with regression recursive residuals. Technometrics 33 (1991) 221-234
-
(1991)
Technometrics
, vol.33
, pp. 221-234
-
-
Hawkins, D.M.1
-
14
-
-
0012347694
-
-
Haykin S. (Ed), John Wiley and Sons, New York, NY
-
In: Haykin S. (Ed). Kalman filtering and neural networks (2001), John Wiley and Sons, New York, NY
-
(2001)
Kalman filtering and neural networks
-
-
-
15
-
-
0004262735
-
-
John Wiley and Sons, New York, NY
-
Huber P.J. Robust statistics (1981), John Wiley and Sons, New York, NY
-
(1981)
Robust statistics
-
-
Huber, P.J.1
-
16
-
-
0033225865
-
An introduction to variational methods for graphical models
-
Jordan M.I., Ghahramani Z., Jaakkola T., and Saul L.K. An introduction to variational methods for graphical models. Machine Learning 37 2 (1999) 183-233
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.3
Saul, L.K.4
-
18
-
-
0001025418
-
Bayesian interpolation
-
MacKay D.J.C. Bayesian interpolation. Neural Computation 4 3 (1992) 415-447
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 415-447
-
-
MacKay, D.J.C.1
-
19
-
-
0038765941
-
Developments in probabilistic modelling with neural networks- ensemble learning
-
Kappen B., and Gielen S. (Eds), Springer-Verlag, Berlin
-
MacKay D.J.C. Developments in probabilistic modelling with neural networks- ensemble learning. In: Kappen B., and Gielen S. (Eds). Proc. 3rd annual symposium on neural networks (1995), Springer-Verlag, Berlin 191-198
-
(1995)
Proc. 3rd annual symposium on neural networks
, pp. 191-198
-
-
MacKay, D.J.C.1
-
21
-
-
0027205884
-
A Scaled Conjugate Gradient algorithm for fast supervised learning
-
Möller A.F. A Scaled Conjugate Gradient algorithm for fast supervised learning. Neural Networks 6 4 (1993) 525-533
-
(1993)
Neural Networks
, vol.6
, Issue.4
, pp. 525-533
-
-
Möller, A.F.1
-
22
-
-
39649106993
-
-
Neal, R. 2006. Software for flexible Bayesian modelling.http://www.cs.toronto.edu/∼radford/fbm.software.html Toronto, CA
-
Neal, R. 2006. Software for flexible Bayesian modelling.http://www.cs.toronto.edu/∼radford/fbm.software.html Toronto, CA
-
-
-
-
24
-
-
0034504542
-
Variational Bayes for non-Gaussian autoregressive models
-
Widrow B., et al. (Ed), IEEE Press, New York
-
Penny W.D., and Roberts S.J. Variational Bayes for non-Gaussian autoregressive models. In: Widrow B., et al. (Ed). Proc. IEEE workshop on neural networks for signal processing (2000), IEEE Press, New York 135-144
-
(2000)
Proc. IEEE workshop on neural networks for signal processing
, pp. 135-144
-
-
Penny, W.D.1
Roberts, S.J.2
-
26
-
-
0036729732
-
Variational bayes for generalised autoregressive models
-
Roberts S.J., and Penny W.D. Variational bayes for generalised autoregressive models. IEEE Transactions on Signal Processing 50 9 (2002) 2245-2257
-
(2002)
IEEE Transactions on Signal Processing
, vol.50
, Issue.9
, pp. 2245-2257
-
-
Roberts, S.J.1
Penny, W.D.2
-
27
-
-
0038582146
-
Incremental Sparse Kernel Machine
-
Proc. int. conf. artificial neural networks. Dorronsoro J.R. (Ed), Springer-Verlag, Berlin
-
Sato M., and Oba S. Incremental Sparse Kernel Machine. In: Dorronsoro J.R. (Ed). Proc. int. conf. artificial neural networks. LNCS Vol. 2415 (2002), Springer-Verlag, Berlin 700-706
-
(2002)
LNCS
, vol.2415
, pp. 700-706
-
-
Sato, M.1
Oba, S.2
-
29
-
-
0037695279
-
-
World Scientific Publ, Singapore
-
Suykens J.A.K., Van Gestel T., De Brabanter J., De Moor B., and Vandewalle J. Least squares support vector machines (2002), World Scientific Publ, Singapore
-
(2002)
Least squares support vector machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
30
-
-
0000779360
-
Detecting Strange Attractors in Turbulence
-
Dynamical systems and turbulence. Rand D.A., and Young L.-S. (Eds), Springer-Verlag, Berlin
-
Takens F. Detecting Strange Attractors in Turbulence. In: Rand D.A., and Young L.-S. (Eds). Dynamical systems and turbulence. Lecture notes in mathematics Vol. 898 (1981), Springer-Verlag, Berlin 366-381
-
(1981)
Lecture notes in mathematics
, vol.898
, pp. 366-381
-
-
Takens, F.1
-
31
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping M.E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1 (2001) 211-244
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
32
-
-
27844592624
-
Variational inference for Student-t models: Robust Bayesian interpolation and generalised component analysis
-
Tipping M.E., and Lawrence N.D. Variational inference for Student-t models: Robust Bayesian interpolation and generalised component analysis. Neurocomputing 69 (2005) 123-141
-
(2005)
Neurocomputing
, vol.69
, pp. 123-141
-
-
Tipping, M.E.1
Lawrence, N.D.2
|