메뉴 건너뛰기




Volumn 16, Issue 1, 2005, Pages 57-67

A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation

Author keywords

Growing; Neuron's significance; Pruning; Radial basis networks; Sequential learning

Indexed keywords

APPROXIMATION THEORY; COMPUTER SIMULATION; LEARNING ALGORITHMS; LEARNING SYSTEMS; OPTIMIZATION; PROBABILITY DENSITY FUNCTION; REGRESSION ANALYSIS; SEQUENTIAL MACHINES; STATISTICAL METHODS;

EID: 13844256702     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2004.836241     Document Type: Article
Times cited : (675)

References (20)
  • 1
    • 0001071040 scopus 로고
    • "A resource-allocating network for function interpolation"
    • J. Platt, "A resource-allocating network for function interpolation," Neural Computat., vol. 3, pp. 213-225, 1991.
    • (1991) Neural Computat. , vol.3 , pp. 213-225
    • Platt, J.1
  • 2
    • 0001553560 scopus 로고
    • "A function estimation approach to sequential learning with neural networks"
    • V. Kadirkamanathan and M. Niranjan, "A function estimation approach to sequential learning with neural networks," Neural Computat., vol. 5, pp. 954-975, 1993.
    • (1993) Neural Computat. , vol.5 , pp. 954-975
    • Kadirkamanathan, V.1    Niranjan, M.2
  • 3
    • 0031270611 scopus 로고    scopus 로고
    • "Growing radial basis neural networks: Merging supervised and unsupervised learning with network growth techniques"
    • Nov
    • N. B. Karayiannis and G. W. Mi, "Growing radial basis neural networks: Merging supervised and unsupervised learning with network growth techniques," IEEE Trans. Neural Netw., vol. 8, no. 6, pp. 1492-1506, Nov. 1997.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , Issue.6 , pp. 1492-1506
    • Karayiannis, N.B.1    Mi, G.W.2
  • 4
    • 0026116468 scopus 로고
    • "Orthogonal least squares learning algorithm for radial basis function networks"
    • Mar
    • S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares learning algorithm for radial basis function networks," IEEE Trans. Neural Netw., vol. 2, no. 2, pp. 302-309, Mar. 1991.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 5
    • 0030195189 scopus 로고    scopus 로고
    • "Regularized orthogonal least squares algorithm for constructing radial basis function networks"
    • S. Chen, E. S. Chng, and K. Alkadhimi, "Regularized orthogonal least squares algorithm for constructing radial basis function networks," Int. J. Control, vol. 64, no. 5, pp. 829-837, 1996.
    • (1996) Int. J. Control , vol.64 , Issue.5 , pp. 829-837
    • Chen, S.1    Chng, E.S.2    Alkadhimi, K.3
  • 6
    • 0029733768 scopus 로고    scopus 로고
    • "Gradient radial basis function networks for nonlinear and nonstationary time series prediction"
    • Jan
    • E. S. Chng, S. Chen, and B. Mulgrew, "Gradient radial basis function networks for nonlinear and nonstationary time series prediction," IEEE Trans. Neural Netw., vol. 7, no. 1, pp. 190-194, Jan. 1996.
    • (1996) IEEE Trans. Neural Netw. , vol.7 , Issue.1 , pp. 190-194
    • Chng, E.S.1    Chen, S.2    Mulgrew, B.3
  • 7
    • 33751560009 scopus 로고
    • "Regularization on the selection of radial basis function centers"
    • M. J. L. Orr, "Regularization on the selection of radial basis function centers," Neural Computat., vol. 7, pp. 606-623, 1995.
    • (1995) Neural Computat. , vol.7 , pp. 606-623
    • Orr, M.J.L.1
  • 8
    • 33747746017 scopus 로고
    • "Minimal topology for a radial basis functions neural network for pattern classification"
    • A. G. Bors and M. Gabbouj, "Minimal topology for a radial basis functions neural network for pattern classification," Dig. Signal Process., vol. 4, pp. 173-188, 1994.
    • (1994) Dig. Signal Process. , vol.4 , pp. 173-188
    • Bors, A.G.1    Gabbouj, M.2
  • 9
    • 0031568361 scopus 로고    scopus 로고
    • "A sequental learning scheme for function approximation using minimal radial basis function (RBF) neural networks"
    • L. Yingwei, N. Sundararajan, and P. Saratchandran, "A sequental learning scheme for function approximation using minimal radial basis function (RBF) neural networks," Neural Computat., vol. 9, pp. 461-478, 1997.
    • (1997) Neural Computat. , vol.9 , pp. 461-478
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3
  • 10
    • 0032022388 scopus 로고    scopus 로고
    • "Performance evaluation of a sequental minimal radial basis function (RBF) neural network learning algorithm"
    • Mar
    • L. Yingwei, N. Sundararajan, and P. Saratchandran, "Performance evaluation of a sequental minimal radial basis function (RBF) neural network learning algorithm," IEEE Trans. Neural Netw., vol. 9, no. 2, pp. 308-318, Mar. 1998.
    • (1998) IEEE Trans. Neural Netw. , vol.9 , Issue.2 , pp. 308-318
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3
  • 11
    • 0035666428 scopus 로고    scopus 로고
    • "Improved RAN sequential prediction using orthogonal techniques"
    • M. Salmerón, J. Ortega, C. G. Puntonet, and A. Prieto, "Improved RAN sequential prediction using orthogonal techniques," Neurocomput., vol. 41, pp. 153-172, 2001.
    • (2001) Neurocomput. , vol.41 , pp. 153-172
    • Salmerón, M.1    Ortega, J.2    Puntonet, C.G.3    Prieto, A.4
  • 13
    • 84899013173 scopus 로고    scopus 로고
    • "Support vector regression machines"
    • M. Mozer, J. Jordan, and T. Petscbe, Eds. Cambridge, MA: MIT Press
    • H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapnik, "Support vector regression machines," in Neural Information Processing Systems 9, M. Mozer, J. Jordan, and T. Petscbe, Eds. Cambridge, MA: MIT Press, 1997, pp. 155-161.
    • (1997) Neural Information Processing Systems 9 , pp. 155-161
    • Drucker, H.1    Burges, C.J.2    Kaufman, L.3    Smola, A.4    Vapnik, V.5
  • 14
  • 15
    • 0004322632 scopus 로고    scopus 로고
    • "Sequential minimal optimization: A fast algorithm for training support vector machines"
    • Microsoft, Res. Tech. Rep. MSR-TR-98-14
    • J. Platt, "Sequential minimal optimization: A fast algorithm for training support vector machines," Microsoft, Res. Tech. Rep. MSR-TR-98-14, 1998.
    • (1998)
    • Platt, J.1
  • 17
    • 13844274641 scopus 로고
    • "Determinants"
    • Englewood Cliffs, NJ: Prentice-Hall
    • J. N. Franklin, "Determinants," in Matrix Theory. Englewood Cliffs, NJ: Prentice-Hall, 1968, pp. 1-25.
    • (1968) Matrix Theory , pp. 1-25
    • Franklin, J.N.1
  • 18
    • 0025839504 scopus 로고
    • "A Gaussian potential function network with hierarchically self-organizing learning"
    • S. Lee and R. M. Kil, "A Gaussian potential function network with hierarchically self-organizing learning," Neural Netw., vol. 4, pp. 207-224, 1991.
    • (1991) Neural Netw. , vol.4 , pp. 207-224
    • Lee, S.1    Kil, R.M.2
  • 19
    • 0034870725 scopus 로고    scopus 로고
    • "Sequential growing and pruning of radial basis function network"
    • Proc. Int. Joint Conf. Neural Networks (IJCNN'01) Washington, DC, Jul. 15-19
    • B. Todorović and M. Stanković, "Sequential growing and pruning of radial basis function network," in Proc. Int. Joint Conf. Neural Networks (IJCNN'01), Washington, DC, Jul. 15-19, pp. 1954-1959.
    • Todorović, B.1    Stanković, M.2
  • 20
    • 0003710380 scopus 로고    scopus 로고
    • LIBSVM - A library for support vector machines
    • Dept. Comput. Sci. Inform. Eng., National Taiwan Univ., Taiwan, R.O.C. [Online]. Available: Available
    • C.-C. Chang and C.-J. Lin. (2003) LIBSVM - A library for support vector machines. Dept. Comput. Sci. Inform. Eng., National Taiwan Univ., Taiwan, R.O.C. [Online]. Available: Available http://www.csie.ntu.edu.tw/ ~cjlin/libsvm/
    • (2003)
    • Chang, C.-C.1    Lin, C.-J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.