메뉴 건너뛰기




Volumn 32, Issue 14, 2011, Pages 1930-1935

Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks

Author keywords

ELM; Multiobjective training algorithms; Neural networks; Online learning algorithm; OS ELM; ReOS ELM

Indexed keywords

ELM; MULTIOBJECTIVE TRAINING ALGORITHMS; ONLINE LEARNING ALGORITHM; OS-ELM; REOS-ELM;

EID: 80052829448     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2011.07.016     Document Type: Article
Times cited : (122)

References (24)
  • 1
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • L. Bartlett The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network IEEE Trans. Inform. Theory 44 2 1998 525 536
    • (1998) IEEE Trans. Inform. Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, L.1
  • 2
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30 (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 3
    • 24944432318 scopus 로고    scopus 로고
    • Model selection for regularized least-squares algorithm in learning theory
    • Springer-Verlag New York pp. 59-85, No. 1
    • E. DeVito, A. Caponnetto, and L. Rosasco Model selection for regularized least-squares algorithm in learning theory Foundations of Computational Mathematics vol. 5 2005 Springer-Verlag New York pp. 59-85, No. 1
    • (2005) Foundations of Computational Mathematics , vol.5
    • Devito, E.1    Caponnetto, A.2    Rosasco, L.3
  • 4
    • 84943987463 scopus 로고
    • Multiple comparisons among means
    • O.J. Dunn Multiple comparisons among means J. Amer. Statist. Assoc. 56 1961 52 64
    • (1961) J. Amer. Statist. Assoc. , vol.56 , pp. 52-64
    • Dunn, O.J.1
  • 6
    • 0026898364 scopus 로고
    • Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation
    • N.P. Galatsanos, and A.K. Katsaggelos Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation IEEE Trans. Image Process. 1 3 1992 322 336
    • (1992) IEEE Trans. Image Process. , vol.1 , Issue.3 , pp. 322-336
    • Galatsanos, N.P.1    Katsaggelos, A.K.2
  • 7
    • 0004236492 scopus 로고    scopus 로고
    • 3rd ed. Johns Hopkins University Press Baltimore
    • Gene H. Golub, and Charles F. van Loan Matrix Computations 3rd ed. 1996 Johns Hopkins University Press Baltimore
    • (1996) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 8
    • 33645588429 scopus 로고    scopus 로고
    • Extreme learning machine with randomly assigned RBF kernels
    • G.-B. Huang, and C.-K. Siew Extreme learning machine with randomly assigned RBF kernels Internat. J. Inform. Technol. 11 2005 16 24
    • (2005) Internat. J. Inform. Technol. , vol.11 , pp. 16-24
    • Huang, G.-B.1    Siew, C.-K.2
  • 10
    • 13844256702 scopus 로고    scopus 로고
    • A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
    • DOI 10.1109/TNN.2004.836241
    • G.-B. Huang, P. Saratchandran, and N. Sundararajan A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation IEEE Trans. Neural Networks 16 1 2005 57 67 (Pubitemid 40241910)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.1 , pp. 57-67
    • Huang, G.-B.1    Saratchandran, P.2    Sundararajan, N.3
  • 11
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • DOI 10.1016/j.neucom.2005.12.126, PII S0925231206000385
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew Extreme learning machine: Theory and applications Neurocomputation 7 2006 489 501 (Pubitemid 44615772)
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 12
    • 0001553560 scopus 로고
    • A function estimation approach to sequential learning with neural networks
    • V. Kadirkamanathan, and M. Niranjan A function estimation approach to sequential learning with neural networks Neural Comput. 5 1993 954 975
    • (1993) Neural Comput. , vol.5 , pp. 954-975
    • Kadirkamanathan, V.1    Niranjan, M.2
  • 13
    • 40849084986 scopus 로고    scopus 로고
    • A multi-objective approach to RBF network learning
    • I. Kokshenev, and A.P. Braga A multi-objective approach to RBF network learning Neurocomputing 71 2008 1203 1209
    • (2008) Neurocomputing , vol.71 , pp. 1203-1209
    • Kokshenev, I.1    Braga, A.P.2
  • 15
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate online sequential learning algorithm for feedforward networks
    • DOI 10.1109/TNN.2006.880583
    • N.-Y. Liang, G.-H. Huang, P. Saratchandran, and N. Sundararajan A fast and accurate online sequential learning algorithm for feedforward networks IEEE Trans. Neural Networks 17 2006 1411 1423 (Pubitemid 44824256)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.6 , pp. 1411-1423
    • Liang, N.-Y.1    Huang, G.-B.2    Saratchandran, P.3    Sundararajan, N.4
  • 16
    • 84871785821 scopus 로고    scopus 로고
    • The Mathworks, Natick, MA. Available from
    • Matlab Toolboxes. The Mathworks, Natick, MA. Available from: .
    • Matlab Toolboxes
  • 19
    • 34250487811 scopus 로고
    • Gaussian elimination is not optimal
    • V. Strassen Gaussian elimination is not optimal Numer. Math. 13 1969 354 356
    • (1969) Numer. Math. , vol.13 , pp. 354-356
    • Strassen, V.1
  • 22
    • 34249073096 scopus 로고    scopus 로고
    • Controlling the parallel layer perceptron complexity using a multiobjective learning algorithm
    • D.A.G. Vieira, J.A. Vasconcelos, and W.M. Caminhas Controlling the parallel layer perceptron complexity using a multiobjective learning algorithm Neural Comput. Appl. 16 2007 317 325
    • (2007) Neural Comput. Appl. , vol.16 , pp. 317-325
    • Vieira, D.A.G.1    Vasconcelos, J.A.2    Caminhas, W.M.3
  • 23
    • 49649091536 scopus 로고    scopus 로고
    • The Q-norm complexity measure and the minimum gradient method: A novel approach to the machine learning structural risk minimization problem
    • D.A.G. Vieira, Ricardo H.C. Takahashi, V. Palade, J.A. Vasconcelos, and W.M. Caminhas The Q-norm complexity measure and the minimum gradient method: A novel approach to the machine learning structural risk minimization problem IEEE Trans. Neural Networks 19 8 2008 1415 1430
    • (2008) IEEE Trans. Neural Networks , vol.19 , Issue.8 , pp. 1415-1430
    • Vieira, D.A.G.1    Takahashi, R.H.C.2    Palade, V.3    Vasconcelos, J.A.4    Caminhas, W.M.5
  • 24
    • 0032022388 scopus 로고    scopus 로고
    • Performance evaluation of a sequential minimal Radial Basis Function (RBF) neural network learning algorithm
    • PII S1045922798018116
    • L. Yingwei, N. Sundararajan, and P. Saratchandran Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm IEEE Trans. Neural Networks 9 2 1998 308 318 (Pubitemid 128743638)
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.2 , pp. 308-318
    • Lu, Y.1    Sundararajan, N.2    Saratchandran, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.