메뉴 건너뛰기




Volumn 70, Issue 9, 2014, Pages 1488-1495

Forecasting performance of support vector machine for the Poyang Lake's water level

Author keywords

Forecasting; Lake water levels; Poyang Lake; Support vector machine; Time series

Indexed keywords

COMPLEX NETWORKS; FORECASTING; LAKES; MATHEMATICAL MODELS; RADIAL BASIS FUNCTION NETWORKS; TIME SERIES; VECTORS; WATER LEVELS;

EID: 84911360237     PISSN: 02731223     EISSN: None     Source Type: Journal    
DOI: 10.2166/wst.2014.396     Document Type: Article
Times cited : (29)

References (26)
  • 1
    • 60249084777 scopus 로고    scopus 로고
    • Generalization performance of support vector machines and neural network in runoff modeling
    • Behzad, M., Asghari, K., Eazi, M. & Palhang, M. 2009 Generalization performance of support vector machines and neural network in runoff modeling. Expert. Syst. Appl. 36, 7624-7629.
    • (2009) Expert. Syst. Appl. , vol.36 , pp. 7624-7629
    • Behzad, M.1    Asghari, K.2    Eazi, M.3    Palhang, M.4
  • 3
    • 76449085807 scopus 로고    scopus 로고
    • Prediction of daily maximum ground ozone concentration using support vector machine
    • Chelani Asha, B. 2010 Prediction of daily maximum ground ozone concentration using support vector machine. Environ. Monit. Assess. (2010) 162, 169-176.
    • (2010) Environ. Monit. Assess. (2010) , vol.162 , pp. 169-176
    • Chelani Asha, B.1
  • 4
    • 84856618854 scopus 로고    scopus 로고
    • Generalized versus nongeneralized neural network model for multi-lead inflow forecasting at Aswan high dam
    • El-Shafie, A. & Noureldin, A. 2010 Generalized versus nongeneralized neural network model for multi-lead inflow forecasting at Aswan high dam. Hydrol. Earth Syst. Sci. Discuss 7 (5), 7957-7993.
    • (2010) Hydrol. Earth Syst. Sci. Discuss , vol.7 , Issue.5 , pp. 7957-7993
    • El-Shafie, A.1    Noureldin, A.2
  • 5
    • 0003425664 scopus 로고    scopus 로고
    • Support Vector Machines for Classification and Regression
    • University of Southampton
    • Gunn, S. 1998 Support Vector Machines for Classification and Regression. ISIS Technical Report, University of Southampton.
    • (1998) ISIS Technical Report
    • Gunn, S.1
  • 6
    • 79957986045 scopus 로고    scopus 로고
    • Monthly streamflow forecasting based on improved support vector machine model
    • Guo, J., Zhou, J., Qin, H., Zou, Q. & Li, Q. 2011 Monthly streamflow forecasting based on improved support vector machine model. Expert. Syst. Appl. 38, 13073-13081.
    • (2011) Expert. Syst. Appl. , vol.38 , pp. 13073-13081
    • Guo, J.1    Zhou, J.2    Qin, H.3    Zou, Q.4    Li, Q.5
  • 8
    • 84880039776 scopus 로고    scopus 로고
    • Daily Forecasting of dam water levels: Comparing a Support Vector Machine (SVM) model with Adaptive Neuro Fuzzy Inference System (ANFIS)
    • Hipni, A., El-shafie, A., Najah, A., Karim, O. A., Hussain, A. & Mukhlisin, M. 2013 Daily Forecasting of dam water levels: comparing a Support Vector Machine (SVM) model with Adaptive Neuro Fuzzy Inference System (ANFIS). Water Resour. Manage. 27, 3803-3823.
    • (2013) Water Resour. Manage. , vol.27 , pp. 3803-3823
    • Hipni, A.1    El-shafie, A.2    Najah, A.3    Karim, O.A.4    Hussain, A.5    Mukhlisin, M.6
  • 9
    • 84884597142 scopus 로고    scopus 로고
    • Detection of trends in precipitation during 1960-2008 in Jiangxi province, southeast China
    • Huang, J., Sun, S. L. & Zhang, J. C. 2013 Detection of trends in precipitation during 1960-2008 in Jiangxi province, southeast China. Theor. Appl. Climatol. 114, 237-251.
    • (2013) Theor. Appl. Climatol. , vol.114 , pp. 237-251
    • Huang, J.1    Sun, S.L.2    Zhang, J.C.3
  • 10
    • 84863306895 scopus 로고    scopus 로고
    • Forecasting performance of LS-SVM for nonlinear hydrologic time series
    • Hwang, S. H., Ham, D. H. & Kim, J. H. 2012 Forecasting performance of LS-SVM for nonlinear hydrologic time series. KSCE J. Civil Eng. 16 (5), 870-882.
    • (2012) KSCE J. Civil Eng. , vol.16 , Issue.5 , pp. 870-882
    • Hwang, S.H.1    Ham, D.H.2    Kim, J.H.3
  • 11
    • 84883792756 scopus 로고    scopus 로고
    • Prediction of Urmia lake water-level fluctuations by using analytical, linear statistic and intelligent methods
    • Kakahaji, H., Banadaki, H. D. & Kakahaji, A. 2013 Prediction of Urmia lake water-level fluctuations by using analytical, linear statistic and intelligent methods. Water Resour. Manage. 27, 4469-4492.
    • (2013) Water Resour. Manage. , vol.27 , pp. 4469-4492
    • Kakahaji, H.1    Banadaki, H.D.2    Kakahaji, A.3
  • 12
    • 84876952781 scopus 로고    scopus 로고
    • Hydrologic simulation in a forest dominated watershed in Himalayan region using SWAT model
    • Kushwaha, A. & Jain, M. K. 2013 Hydrologic simulation in a forest dominated watershed in Himalayan region using SWAT model. Water Resour. Manag. 27 (8), 3005-3023.
    • (2013) Water Resour. Manag. , vol.27 , Issue.8 , pp. 3005-3023
    • Kushwaha, A.1    Jain, M.K.2
  • 13
    • 67649213554 scopus 로고    scopus 로고
    • Optimal reduction of solutions for support vector machines
    • Lin, H. J. & Yeh, J. P. 2009 Optimal reduction of solutions for support vector machines. Appl. Math. Comput. 214, 329-335.
    • (2009) Appl. Math. Comput. , vol.214 , pp. 329-335
    • Lin, H.J.1    Yeh, J.P.2
  • 14
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin, J. Y., Cheng, C. T. & Chau, K. W. 2006 Using support vector machines for long-term discharge prediction. Hydrol. Sci. J. 51 (4), 599-612.
    • (2006) Hydrol. Sci. J. , vol.51 , Issue.4 , pp. 599-612
    • Lin, J.Y.1    Cheng, C.T.2    Chau, K.W.3
  • 15
    • 80052193257 scopus 로고    scopus 로고
    • Integrated versus isolated scenario for prediction dissolved oxygen at progression of water quality monitoring stations
    • Najah, A., El-Shafie, A., Karim, O. A. & Jaafar, O. 2011 Integrated versus isolated scenario for prediction dissolved oxygen at progression of water quality monitoring stations. Hydrol. Earth Syst. Sci. Discuss 15, 2693-2708.
    • (2011) Hydrol. Earth Syst. Sci. Discuss , vol.15 , pp. 2693-2708
    • Najah, A.1    El-Shafie, A.2    Karim, O.A.3    Jaafar, O.4
  • 16
    • 84874967263 scopus 로고    scopus 로고
    • Regional drought modes in Iran using the SPI: The effect of time scale and spatial resolution
    • Raziei, T., Bordi, I. & Pereira, L. S. 2013 Regional drought modes in Iran using the SPI: the effect of time scale and spatial resolution. Water Resour. Manag. 27, 1661-1674.
    • (2013) Water Resour. Manag. , vol.27 , pp. 1661-1674
    • Raziei, T.1    Bordi, I.2    Pereira, L.S.3
  • 17
    • 84874271536 scopus 로고    scopus 로고
    • Effect of global warming on intensity and frequency curves of precipitation, case study of Northwestern Iran
    • Roshan, G., Ghanghermeh, A. A., Nasrabadi, T. & Meimandi, J. B. 2013 Effect of global warming on intensity and frequency curves of precipitation, case study of Northwestern Iran. Water Resour. Manag. 27 (5), 1563-1579.
    • (2013) Water Resour. Manag. , vol.27 , Issue.5 , pp. 1563-1579
    • Roshan, G.1    Ghanghermeh, A.A.2    Nasrabadi, T.3    Meimandi, J.B.4
  • 20
    • 84871434337 scopus 로고    scopus 로고
    • Hydrologic drought assessment in Northwestern Iran based on Streamflow Drought Index (SDI)
    • Tabari, H., Nikbakht, J. & Talaee, P. H. 2013 Hydrologic drought assessment in Northwestern Iran based on Streamflow Drought Index (SDI). Water Resour. Manag. 27 (1), 137-151.
    • (2013) Water Resour. Manag. , vol.27 , Issue.1 , pp. 137-151
    • Tabari, H.1    Nikbakht, J.2    Talaee, P.H.3
  • 21
    • 33750018142 scopus 로고    scopus 로고
    • Downscaling of precipitation for climate change scenarios: A support vector machine approach
    • Tripathi, S., Srinivas, V. V. & Nanjundiah, R. S. 2006 Downscaling of precipitation for climate change scenarios: a support vector machine approach. J. Hydrol. 330 (3-4), 621-640.
    • (2006) J. Hydrol. , vol.330 , Issue.3-4 , pp. 621-640
    • Tripathi, S.1    Srinivas, V.V.2    Nanjundiah, R.S.3
  • 24
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang, W. C., Chao, K. W., Cheng, C. T. & Qiu, L. 2006 A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 374 (3-4), 294-306.
    • (2006) J. Hydrol. , vol.374 , Issue.3-4 , pp. 294-306
    • Wang, W.C.1    Chao, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 25
    • 78650179085 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
    • Yoon, H., Jun, S. C., Hyun, Y., Bae, G. O. & Lee, K. K. 2010 A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J. Hydrol. 396, 128-138.
    • (2010) J. Hydrol. , vol.396 , pp. 128-138
    • Yoon, H.1    Jun, S.C.2    Hyun, Y.3    Bae, G.O.4    Lee, K.K.5
  • 26
    • 77955213194 scopus 로고    scopus 로고
    • Using a support vector machine method to predict the development indices of very high water cut oilfields
    • Zhong, Y. H., Zhao, L., Liu, Z. B., Yao, X. & Rong, L. 2010 Using a support vector machine method to predict the development indices of very high water cut oilfields. Pet. Sci. 7, 379-384.
    • (2010) Pet. Sci. , vol.7 , pp. 379-384
    • Zhong, Y.H.1    Zhao, L.2    Liu, Z.B.3    Yao, X.4    Rong, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.