메뉴 건너뛰기




Volumn 162, Issue 1-4, 2010, Pages 169-176

Prediction of daily maximum ground ozone concentration using support vector machine

Author keywords

Ground ozone concentration; MLP; MR; Sensitivity analysis; SVM

Indexed keywords

ACCURATE PREDICTION; COMPLEX CHEMICAL REACTIONS; GROUND OZONE CONCENTRATION; LOCAL MINIMUMS; METEOROLOGICAL PARAMETERS; NETWORK PARAMETERS; NEURAL NETWORK MODEL; OVERFITTING; OZONE CONCENTRATION; OZONE PRODUCTION; PHENOMENOLOGICAL MODELS;

EID: 76449085807     PISSN: 01676369     EISSN: 15732959     Source Type: Journal    
DOI: 10.1007/s10661-009-0785-0     Document Type: Article
Times cited : (30)

References (19)
  • 5
    • 0031172117 scopus 로고    scopus 로고
    • Comparing neural networks and regression models for ozone forecasting
    • A. Comrie 1997 Comparing neural networks and regression models for ozone forecasting Journal of the Air & Waste Management Association 47 653 663
    • (1997) Journal of the Air & Waste Management Association , vol.47 , pp. 653-663
    • Comrie, A.1
  • 6
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences
    • DOI 10.1016/S1352-2310(97)00447-0, PII S1352231097004470
    • M. W. Gardner S. R. Dorling 1998 Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences Atmospheric Environment 32 14/15 2627 2636 10.1016/S1352-2310(97)00447-0 doi:10.1016/S1352-2310(97)00447-0 (Pubitemid 28351824)
    • (1998) Atmospheric Environment , vol.32 , Issue.14-15 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 8
    • 15544389367 scopus 로고    scopus 로고
    • Potential assessment of the 'support vector machine' method in forecasting ambient air pollutant trends
    • 10.1016/j.chemosphere.2004.10.032 doi:10.1016/j.chemosphere.2004.10.032
    • W. Z. Lu W. J. Wang 2005 Potential assessment of the 'support vector machine' method in forecasting ambient air pollutant trends Chemosphere 59 693 701 10.1016/j.chemosphere.2004.10.032 doi:10.1016/j.chemosphere.2004.10.032
    • (2005) Chemosphere , vol.59 , pp. 693-701
    • Lu, W.Z.1    Wang, W.J.2
  • 10
    • 0033880828 scopus 로고    scopus 로고
    • Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily maximum ozone concentrations
    • DOI 10.1016/S0377-2217(99)00069-7
    • V. R. Prybutok J. Yi D. David Mitchell 2000 Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily maximum ozone concentrations European Journal of Operational Research 122 31 40 10.1016/S0377-2217(99)00069-7 doi:10.1016/S0377-2217(99)00069-7 (Pubitemid 30541666)
    • (2000) European Journal of Operational Research , vol.122 , Issue.1 , pp. 31-40
    • Prybutok, V.R.1    Yi, J.2    Mitchell, D.3
  • 12
    • 0025247377 scopus 로고
    • Evaluation and comparison of statistical forecast models for daily maximum ozone concentrations
    • S. M. Robeson D. G. Steyn 1990 Evaluation and comparison of statistical forecast models for daily maximum ozone concentrations Atmospheric Environment 24B 303 312
    • (1990) Atmospheric Environment , vol.24 , pp. 303-312
    • Robeson, S.M.1    Steyn, D.G.2
  • 14
    • 76449088673 scopus 로고    scopus 로고
    • Retrieved from
    • Sewell, M. (2005). WinSVM software. Retrieved from http://www.cs.ucl.ac. uk/staff/M.Sewell/winsvm.
    • (2005) WinSVM Software
    • Sewell, M.1
  • 15
    • 0003401675 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Royal Holloway College, University of London, UK Retrieved from
    • Smola, A. J., & Scholkopf, B. (1998). A tutorial on support vector regression. NeuroCOLT technical report NC-TR-98-030, Royal Holloway College, University of London, UK. Retrieved from http://www.kernel-machines.org.
    • (1998) NeuroCOLT Technical Report NC-TR-98-030
    • Smola, A.J.1    Scholkopf, B.2
  • 19
    • 0030476772 scopus 로고    scopus 로고
    • A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area
    • DOI 10.1016/0269-7491(95)00078-X
    • J. Yi R. Prybutok 1996 A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area Environmental Pollution 923 349 357 10.1016/0269-7491(95)00078-X doi:10.1016/0269-7491(95)00078-X (Pubitemid 26195592)
    • (1996) Environmental Pollution , vol.92 , Issue.3 , pp. 349-357
    • Yi, J.1    Prybutok, V.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.