메뉴 건너뛰기




Volumn 15, Issue 8, 2011, Pages 2693-2708

Integrated versus isolated scenario for prediction dissolved oxygen at progression of water quality monitoring stations

Author keywords

[No Author keywords available]

Indexed keywords

COEFFICIENT OF CORRELATION; EFFECTIVE PARAMETERS; ELECTRICAL CONDUCTIVITY; FIELD DATA; HIDDEN LAYERS; INPUT PARAMETER; LOW CORRELATION; MULTI-LAYER PERCEPTRON NEURAL NETWORKS; PREDICTION MODEL; RIVER BASINS; RIVER WATER QUALITY; TEST SETS; TESTING DATA; WATER QUALITY MONITORING STATIONS; WATER QUALITY PARAMETERS;

EID: 80052193257     PISSN: 10275606     EISSN: 16077938     Source Type: Journal    
DOI: 10.5194/hess-15-2693-2011     Document Type: Article
Times cited : (46)

References (46)
  • 1
    • 77951015838 scopus 로고    scopus 로고
    • River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: Case study of the Ganges river basin
    • doi:10.5194/hess-13-1607-2009
    • Akhtar, M. K., Corzo, G. A., van Andel, S. J., and Jonoski, A.: River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin, Hydrol. Earth Syst. Sci., 13, 1607-1618, doi:10.5194/hess-13- 1607-2009, 2009.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1607-2009
    • Akhtar, M.K.1    Corzo, G.A.2    Van Andel, S.J.3    Jonoski, A.4
  • 2
    • 33344463490 scopus 로고    scopus 로고
    • Water level forecasting through fuzzy logic and artificial neural network approaches
    • Alvisi, S., Mascellani, G., Franchini, M., and B'ardossy, A.: Water level forecasting through fuzzy logic and artificial neural network approaches, Hydrol. Earth Syst. Sci., 10, 1-17, doi:10.5194/hess-10-1-2006, 2006. (Pubitemid 43286038)
    • (2006) Hydrology and Earth System Sciences , vol.10 , Issue.1 , pp. 1-17
    • Alvisi, S.1    Mascellani, G.2    Franchini, M.3    Bardossy, A.4
  • 3
    • 0034160125 scopus 로고    scopus 로고
    • Evaluation of modelled and measured patterns of dissolved oxygen in a freshwater lake as an indicator of the presence of biodegradable organic pollution
    • DOI 10.1016/S0043-1354(99)00239-0, PII S0043135499002390
    • Ansa-Ansare, O. D., Marr, I. L., and Cresser, M. S.: Evaluation of modelled and measured patterns of dissolved oxygen in a freshwater lake as an indicator of the presence of biodegradable organic pollution, Water Resour. Res., 34, 1079-1088, 2000. (Pubitemid 30069668)
    • (2000) Water Research , vol.34 , Issue.4 , pp. 1079-1088
    • Ansa-Asare, O.D.1    Marr, I.L.2    Cresser, M.S.3
  • 5
    • 18144452325 scopus 로고    scopus 로고
    • A review of currently available in-stream water-quality models and their applicability for simulating dissolved oxygen in lowland rivers
    • DOI 10.1016/S0048-9697(03)00063-9
    • Cox, B A.: A review of currently available in-stream-water-quality models and their applicability for simulating dissolved oxygen in lowland rivers, Sci. Total Environ., 314-316, 335-377, 2003. (Pubitemid 37123042)
    • (2003) Science of the Total Environment , vol.314-316 , pp. 335-377
    • Cox, B.A.1
  • 6
    • 0242694458 scopus 로고    scopus 로고
    • Hydrology and assessment of lotic water quality in Cuttack City, India
    • DOI 10.1023/A:1026193514875
    • Das, J. and Acharya, B. C.: Hydrology and Assessment of Lotic Water Quality in Cuttack City, India, J. Water, Air Soil Pollut., 150, 163-175, 2003. (Pubitemid 37406784)
    • (2003) Water, Air, and Soil Pollution , vol.150 , Issue.1-4 , pp. 163-175
    • Das, J.1    Acharya, B.C.2
  • 9
    • 75049084570 scopus 로고    scopus 로고
    • Department of Environment (DOE), Kuala Lumpur: DOE Documents
    • Department of Environment (DOE): Water quality management in Malaysia. Kuala Lumpur: DOE Documents, 2003.
    • (2003) Water Quality Management in Malaysia
  • 10
    • 56249121165 scopus 로고    scopus 로고
    • Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique
    • Dogan, E., Sengorur, B., and Koklu, R.: Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique, J. Environ. Manage., 90, 1229-1235, 2009.
    • (2009) J. Environ. Manage. , vol.90 , pp. 1229-1235
    • Dogan, E.1    Sengorur, B.2    Koklu, R.3
  • 11
    • 0000255034 scopus 로고    scopus 로고
    • Quantitative description of element concentrations in longitudinal river profiles by multiway PLS models
    • Einax, J. W., Aulinger, A., Tumpling, W. V., and Prange, A.: Quantitative description of element concentrations in longitudinal river profiles by multiway PLS models, Fres. J. Anal. Chem., 363, 655-661, 1999.
    • (1999) Fres. J. Anal. Chem. , vol.363 , pp. 655-661
    • Einax, J.W.1    Aulinger, A.2    Tumpling, W.V.3    Prange, A.4
  • 12
    • 63049105407 scopus 로고    scopus 로고
    • Neural network model for Nile River inflow forecasting analysis of historical inflow data
    • El-shafie, A., Noureldin, A., Taha, M. R., and Basri, H.: Neural network model for Nile River inflow forecasting analysis of historical inflow data, J. Appl. Sci., 8(24), 4487-4499, 2008.
    • (2008) J. Appl. Sci. , vol.8 , Issue.24 , pp. 4487-4499
    • El-shafie, A.1    Noureldin, A.2    Taha, M.R.3    Basri, H.4
  • 13
    • 79958705260 scopus 로고    scopus 로고
    • Performance of artificial neural network and regression techniques for rainfall-runoff prediction
    • 18 April
    • El-shafie, A., Mukhlisin, M., Najah, A. A., and Taha, M. R.: Performance of artificial neural network and regression techniques for rainfall-runoff prediction, Int. J. Phys. Sci., 6(8), 1997-2003, 18 April, 2011
    • (2011) Int. J. Phys. Sci. , vol.6 , Issue.8 , pp. 1997-2003
    • El-shafie, A.1    Mukhlisin, M.2    Najah, A.A.3    Taha, M.R.4
  • 14
    • 77952889835 scopus 로고    scopus 로고
    • The use of artificial neural network (ann) for modeling of cod removal from antibiotic aqueous solution by the fenton process
    • Elmolla, E. S., Chaudhuri, M., and Eltoukhy, M. M.: The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process, J. Hazard. Mater., 179, 127-134, 2010.
    • (2010) J. Hazard. Mater. , vol.179 , pp. 127-134
    • Elmolla, E.S.1    Chaudhuri, M.2    Eltoukhy, M.M.3
  • 16
    • 0028602193 scopus 로고
    • Modeling algal blooms in freshwaters using artificial neural networks
    • edited by: Zanetti, P., Computational Mechanics Publications, Boston
    • French, M. and Recknagel, F.: Modeling algal blooms in freshwaters using artificial neural networks, in: Computer Techniques in Environmental Studies V, vol. II: Environment Systems, edited by: Zanetti, P., Computational Mechanics Publications, Boston, 87-94, 1994.
    • (1994) Computer Techniques in Environmental Studies V, Vol. II: Environment Systems , pp. 87-94
    • French, M.1    Recknagel, F.2
  • 17
    • 0037095973 scopus 로고    scopus 로고
    • A model for predicting the temporal evolution of dissolved oxygen concentration in shallow estuaries
    • DOI 10.1023/A:1020365225564
    • Garcsia, A., Revilla, J. A., Medina, R., Alvarez, C., and Juanes, J. A.: A model for predicting the temporal evolution of dissolved oxygen concentration in shallow estuaries, Hydrobiology, 475/476, 205-211, 2002. (Pubitemid 35288748)
    • (2002) Hydrobiologia , vol.475-476 , pp. 205-211
    • Garcia, A.1    Revilla, J.A.2    Medina, R.3    Alvarez, C.4    Juanes, J.A.5
  • 20
    • 0003413187 scopus 로고    scopus 로고
    • Neural networks: Comprehensive foundation
    • N.J, USA: Prentice-Hall
    • Haykin, S.: Neural Networks: Comprehensive Foundation, Upper Saddle River, N.J, USA: Prentice-Hall, 1999.
    • (1999) Upper Saddle River
    • Haykin, S.1
  • 21
    • 0022220935 scopus 로고
    • Study and interpretation of the chemical characteristics of natural water
    • Washington
    • Hem, J. D.: Study and Interpretation of the Chemical Characteristics of Natural Water, 3rd Ed. United States Geological Survey, Washington, 1985. Hornik, K. and White,
    • (1985) 3rd Ed. United States Geological Survey
    • Hem, J.D.1
  • 22
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • DOI 10.1016/0893-6080(89)90020-8
    • Hornik, K. and White, H.: Multilayer feedforward networks are universal approximators, Neural Netw., 2, 359-366, 1989. (Pubitemid 20609008)
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik Kurt1    Stinchcombe Maxwell2    White Halbert3
  • 23
    • 38349188537 scopus 로고    scopus 로고
    • Modelling dissolved oxygen dynamics in coastal lagoons
    • Hull, V., Parrella, L., and Falcucci, M.: Modelling dissolved oxygen dynamics in coastal lagoons, Ecol. Model, 2, 468-480, 2008.
    • (2008) Ecol. Model , vol.2 , pp. 468-480
    • Hull, V.1    Parrella, L.2    Falcucci, M.3
  • 24
    • 77951872732 scopus 로고    scopus 로고
    • An artificial neural network model for rainfall forecasting in Bangkok, Thailand
    • doi:10.5194/hess-13-1413-2009
    • Hung, N. Q., Babel, M. S., Weesakul, S., and Tripathi, N. K.: An artificial neural network model for rainfall forecasting in Bangkok, Thailand, Hydrol. Earth Syst. Sci., 13, 1413-1425, doi:10.5194/hess-13-1413-2009, 2009.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1413-1425
    • Hung, N.Q.1    Babel, M.S.2    Weesakul, S.3    Tripathi, N.K.4
  • 26
    • 0003226593 scopus 로고    scopus 로고
    • Foundations of neural networks
    • Cambridge: MIT Press
    • Kasabov, N. K.: Foundations of neural networks, fuzzy systems,and knowledge engineering, Cambridge: MIT Press, 1996. Kuo, J., Hsieh, M., Lung, W., and She, N.: Using artificial neural network for reservoir eutriphication prediction, Ecol. Model., 200, 171-177, 2007.
    • (1996) Fuzzy systems and knowledge engineering
    • Kasabov, N.K.1
  • 27
    • 37849186107 scopus 로고    scopus 로고
    • Using artificial neural network for reservoir eutrophication prediction
    • DOI 10.1016/j.ecolmodel.2006.06.018, PII S0304380006002985
    • Kuo, J., Hsieh, M., Lung, W., and She, N.: Using artificial neural network for reservoir eutriphication prediction, Ecol. Model., 200, 171-177, 2007. (Pubitemid 44828246)
    • (2007) Ecological Modelling , vol.200 , Issue.1-2 , pp. 171-177
    • Kuo, J.-T.1    Hsieh, M.-H.2    Lung, W.-S.3    She, N.4
  • 28
    • 0030428001 scopus 로고    scopus 로고
    • Application of neural networks to modeling nonlinear relationships in ecology
    • Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J., and Aulagnier, S.: Application of neural networks to modeling nonlinear relationships in ecology, Ecol. Model, 90, 39-52, 1996b.
    • (1996) Ecol. Model , vol.90 , pp. 39-52
    • Lek, S.1    Delacoste, M.2    Baran, P.3    Dimopoulos, I.4    Lauga, J.5    Aulagnier, S.6
  • 29
    • 22044457732 scopus 로고    scopus 로고
    • The water quality of the Ria de Aveiro lagoon, Portugal: From the observations to the implementation of a numerical model
    • DOI 10.1016/j.marenvres.2005.05.001, PII S0141113605000449
    • Lopes, J. F., Silva, C. I., and Cardoso, A. C.: The water quality of the Ria de Aveiro lagoon, Portugal: From the observations to the implementation of a numerical model, Mar. Environ. Res., 60, 594-628, 2005. (Pubitemid 40966947)
    • (2005) Marine Environmental Research , vol.60 , Issue.5 , pp. 594-628
    • Lopes, J.F.1    Dias, J.M.2    Cardoso, A.C.3    Silva, C.I.V.4
  • 30
    • 65249087289 scopus 로고    scopus 로고
    • Prediction of Johor River water quality parameters using artificial neural networks
    • ISSN 1450-216X
    • Najah, A., Elshafie, A., Karim, O. A., and Jaffar, O.: Prediction of Johor River water quality parameters using artificial neural networks, Eur. J. Scienti. Res., 28(3), 422-435 ISSN 1450-216X, 2009.
    • (2009) Eur. J. Scienti. Res. , vol.28 , Issue.3 , pp. 422-435
    • Najah, A.1    Elshafie, A.2    Karim, O.A.3    Jaffar, O.4
  • 31
    • 84865634266 scopus 로고    scopus 로고
    • Water quality prediction model utilizing integrated wavelet-ANFIS model with cross validation
    • In press, doi:10.1007/s00521-010-0486-1
    • Najah A. A., El-Shafie A., Karim O. A., and Jaafar, O.: Water Quality Prediction Model Utilizing Integrated Wavelet-ANFIS Model with Cross Validation, Neural Comput. Appl., in press, doi:10.1007/s00521-010-0486-1, 2010b.
    • (2010) Neural Comput. Appl.
    • Najah, A.A.1    El-Shafie, A.2    Karim, O.A.3    Jaafar, O.4
  • 32
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models, part 1: A discussion of principles
    • Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models, Part 1: a discussion of principles, J. Hydrol., 10(3), 282-290, 1970.
    • (1970) J. Hydrol. , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 33
    • 0034878542 scopus 로고    scopus 로고
    • Fish-habitat relationships in lakes: Gaining predictive and explanatory insight by using artificial neural networks
    • DOI 10.1577/1548-8659(2001)130<0878:FHRILG>2.0.CO;2
    • Olden, J. D. and Jackson, D. A.: Fish-habitat relationships in lakes: gaining predictive and explanatory insight by using artificial neural networks, Trans. Am. Fish Soc., 130, 878-897, 2001. (Pubitemid 32818413)
    • (2001) Transactions of the American Fisheries Society , vol.130 , Issue.5 , pp. 878-897
    • Olden, J.D.1    Jackson, D.A.2
  • 34
    • 49849106661 scopus 로고    scopus 로고
    • An ANN application for water quality forecasting
    • Palani, S., Liong, S. Y., and Tkalich, P.: An ANN application for water quality forecasting, Marine Pollut. Bull., 56, 1586-1597, 2008.
    • (2008) Marine Pollut. Bull. , vol.56 , pp. 1586-1597
    • Palani, S.1    Liong, S.Y.2    Tkalich, P.3
  • 35
    • 85009644396 scopus 로고    scopus 로고
    • Modelling of dissolved oxygen and biochemical oxygen demand in river water using a detailed and simplified model
    • Radwan, M., Willems, P., El-Sadek, A., and Berlamont, J.: Modelling of dissolved oxygen and biochemical oxygen demand in river water using a detailed and simplified model, Int. J. River Basin Manage., 1(2), 97-103, 2003.
    • (2003) Int. J. River Basin Manage. , vol.1 , Issue.2 , pp. 97-103
    • Radwan, M.1    Willems, P.2    El-Sadek, A.3    Berlamont, J.4
  • 36
    • 0022471098 scopus 로고
    • Learning representations by backpropagating errors
    • Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning representations by backpropagating errors, Nature, 323, 533-536, 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 37
    • 33749656875 scopus 로고    scopus 로고
    • Dissolved oxygen estimation using artificial neural network for water quality control
    • Sengorur, B., Dogan, E., Koklu, R., and Samandar, A.: Dissolved oxygen estimation using artificial neural network for water quality control, Fresen. Environ. Bull., 15(9a), 1064-1067, 2006. (Pubitemid 44555334)
    • (2006) Fresenius Environmental Bulletin , vol.15 , Issue.9 A , pp. 1064-1067
    • Sengorur, B.1    Dogan, E.2    Koklu, R.3    Samandar, A.4
  • 38
    • 60649118396 scopus 로고    scopus 로고
    • Artificial neural network modeling of the river water quality - A case study
    • Singh, K. P., Basant, A., Malik, A., and Jain, G.: Artificial neural network modeling of the river water quality - a case study, Ecol. Model, 220, 888-895, 2009.
    • (2009) Ecol. Model , vol.220 , pp. 888-895
    • Singh, K.P.1    Basant, A.2    Malik, A.3    Jain, G.4
  • 40
    • 0346972461 scopus 로고    scopus 로고
    • A neural network-based approach for calculating dissolved oxygen profiles in reservoirs
    • DOI 10.1007/s00521-003-0378-8
    • Soyupak, S., Karaer, F., Gurbuz, H., Kivrak, E., Senturk, E., and Yazici, A.: A neural networkbased approach for calculating dissolved oxygen profiles in reservoirs, Neural Comput. Appl., 12, 166-172, 2003. (Pubitemid 38039903)
    • (2003) Neural Computing and Applications , vol.12 , Issue.3-4 , pp. 166-172
    • Soyupak, S.1    Karaer, F.2    Gurbuz, H.3    Kivrak, E.4    Senturk, E.5    Yazici, A.6
  • 42
    • 34548262011 scopus 로고    scopus 로고
    • Study of multivariate linear regression analysis model for ground water quality prediction
    • Xiang, S. L., Liu, Z. M., and Ma, L. P.: Study of multivariate linear regression analysis model for ground water quality prediction, Guizhou Science, 24(1), 60-62, 2006.
    • (2006) Guizhou Science , vol.24 , Issue.1 , pp. 60-62
    • Xiang, S.L.1    Liu, Z.M.2    Ma, L.P.3
  • 43
    • 0030725850 scopus 로고    scopus 로고
    • Novel application of a back-propagation artificial neural network model formulated to predict algal bloom
    • DOI 10.1016/S0273-1223(97)00464-2, PII S0273122397004642
    • Yabunaka, K.-I., Hosomi, M., and Murakami, A.: Novel application of a backpropagation artificial neural network model formulated to predict algal bloom, Water Sci. Technol., 36(5), 89-97, 1997. (Pubitemid 27507421)
    • (1997) Water Science and Technology , vol.36 , Issue.5 , pp. 89-97
    • Yabunaka, K.-I.1    Hosomi, M.2    Murakami, A.3
  • 44
    • 77954724126 scopus 로고    scopus 로고
    • Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites
    • doi:10.5194/hess-14-1309-2010
    • Yen-Ming Chiang, Li-Chiu Chang, Meng-Jung Tsai, Yi-Fung Wang, and Fi-John Chang: Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites, Hydrol. Earth Syst. Sci., 14, 1309- 1319, doi:10.5194/hess-14-1309-2010, 2010.
    • (2010) Hydrol. Earth Syst. Sci. , vol.14 , pp. 1309-1319
    • Chiang, Y.-M.1    Chang, L.-C.2    Tsai, M.-J.3    Wang, Y.-F.4    Chang, F.-J.5
  • 45
    • 34548260729 scopus 로고    scopus 로고
    • Water quality forecast through application of BP neural network at Yuquio reservoir
    • Ying, Z., Jun, N., Fuyi, C., and Liang, G.: Water quality forecast through application of BP neural network at Yuquio reservoir, J. Zhejiang Univ. Sci., A8, 1482-1487, 2007.
    • (2007) J. Zhejiang Univ. Sci. , vol.A8 , pp. 1482-1487
    • Ying, Z.1    Jun, N.2    Fuyi, C.3    Liang, G.4
  • 46
    • 77649216766 scopus 로고    scopus 로고
    • Prediction of dissolved oxygen in the Mediterranean Sea along Gaza, Palestine-an artificial neural network approach
    • Zaqoot, H. A., Ansari, A. K., and Unar, M. A.: Prediction of dissolved oxygen in the Mediterranean Sea along Gaza, Palestine-an artificial neural network approach, Water Sci. Technol., 60(12), 3051-3059, 2009.
    • (2009) Water Sci. Technol. , vol.60 , Issue.12 , pp. 3051-3059
    • Zaqoot, H.A.1    Ansari, A.K.2    Unar, M.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.