메뉴 건너뛰기




Volumn 28, Issue 5-6, 2014, Pages 1336-1365

Self-organizing maps by difference of convex functions optimization

Author keywords

DC programming; DCA; Self organizing maps

Indexed keywords

CONFORMAL MAPPING; MAPS; OPTIMIZATION; SELF ORGANIZING MAPS;

EID: 84906779671     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-014-0369-7     Document Type: Article
Times cited : (21)

References (75)
  • 1
  • 2
    • 69049117373 scopus 로고    scopus 로고
    • Clustering hierarchical data using self-organizing map: A graph-theoretical approach
    • Springer, Heidelberg
    • Argyrou A (2009) Clustering hierarchical data using self-organizing map: a graph-theoretical approach. Advances in self-organizing maps. Lecture Notes in Computer Science, vol 5629. Springer, Heidelberg, pp 19-27
    • (2009) Advances in Self-organizing Maps. Lecture Notes in Computer Science , vol.5629 , pp. 19-27
    • Argyrou, A.1
  • 3
    • 84898545678 scopus 로고    scopus 로고
    • Topology-oriented self-organizing maps: A survey
    • 10.1007/s10044-014-0367-9 3192057
    • Astudillo CA, Oommen BJ (2014) Topology-oriented self-organizing maps: a survey. Pattern Anal Appl 17:223-248
    • (2014) Pattern Anal Appl , vol.17 , pp. 223-248
    • Astudillo, C.A.1    Oommen, B.J.2
  • 4
    • 0038813620 scopus 로고    scopus 로고
    • Self-organizing feature maps for modeling and control of robotic manipulators
    • 10.1023/A:1023641801514 1038.68121
    • Barreto GA, Araúo AFR, Ritter HJ (2003) Self-organizing feature maps for modeling and control of robotic manipulators. J Intell Robot Syst 36(4):407-450
    • (2003) J Intell Robot Syst , vol.36 , Issue.4 , pp. 407-450
    • Barreto, G.A.1    Araúo, A.F.R.2    Ritter, H.J.3
  • 6
    • 0000787409 scopus 로고    scopus 로고
    • Phase transitions in stochastic self-organizing maps
    • 10.1103/PhysRevE.56.3876
    • Burger M, Graepel T, Obermayer K (1997) Phase transitions in stochastic self-organizing maps. Phys Rev E 56:3876-3890
    • (1997) Phys Rev e , vol.56 , pp. 3876-3890
    • Burger, M.1    Graepel, T.2    Obermayer, K.3
  • 7
    • 77954593162 scopus 로고    scopus 로고
    • Classification of documents using Kohonens self-organizing map
    • 10.7763/IJCTE.2009.V1.99
    • ChandraShekar BH, Shoba G (2009) Classification of documents using Kohonens self-organizing map. Int J Comput Theory Eng 1(5):610-613
    • (2009) Int J Comput Theory Eng , vol.1 , Issue.5 , pp. 610-613
    • Chandrashekar, B.H.1    Shoba, G.2
  • 10
  • 11
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • 0364.62022 501537
    • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1-38
    • (1977) J R Stat Soc B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 18
    • 0344972928 scopus 로고    scopus 로고
    • Self-organizing maps: Generalizations and new optimization techniques
    • 10.1016/S0925-2312(98)00035-6 0917.68182
    • Graepel T, Burger M, Obermayer K (1998) Self-organizing maps: generalizations and new optimization techniques. Neurocomputing 21(13):173-190
    • (1998) Neurocomputing , vol.21 , Issue.13 , pp. 173-190
    • Graepel, T.1    Burger, M.2    Obermayer, K.3
  • 19
    • 0036191654 scopus 로고    scopus 로고
    • Self-organizing map for clustering in the graph domain
    • 10.1016/S0167-8655(01)00173-8 1006.68111
    • Günter S, Bunke H (2002) Self-organizing map for clustering in the graph domain. Pattern Recognit Lett 23(4):405-417
    • (2002) Pattern Recognit Lett , vol.23 , Issue.4 , pp. 405-417
    • Günter, S.1    Bunke, H.2
  • 20
    • 84885603830 scopus 로고    scopus 로고
    • Bayesian self-organizing map for data classification and clustering
    • Guo X, Wang H, Glass DH (2013) Bayesian self-organizing map for data classification and clustering. Int J Wavelets Multiresolut Inf Process 11(5):91-102
    • (2013) Int J Wavelets Multiresolut Inf Process , vol.11 , Issue.5 , pp. 91-102
    • Guo, X.1    Wang, H.2    Glass, D.H.3
  • 21
    • 61849163336 scopus 로고    scopus 로고
    • Graph self-organizing maps for cyclic and unbounded graphs
    • 10.1016/j.neucom.2008.12.021
    • Hagenbuchner M, Sperduti A, Tsoi AC (2009) Graph self-organizing maps for cyclic and unbounded graphs. Neurocomputing 72(79):1419-1430
    • (2009) Neurocomputing , vol.72 , Issue.79 , pp. 1419-1430
    • Hagenbuchner, M.1    Sperduti, A.2    Tsoi, A.C.3
  • 22
    • 84886875551 scopus 로고    scopus 로고
    • Hierarchical self-organizing maps for clustering spatiotemporal data
    • 10.1080/13658816.2013.788249
    • Hagenauer J, Helbich M (2013) Hierarchical self-organizing maps for clustering spatiotemporal data. Int J Geograph Inform Sci 27(10):2026-2042
    • (2013) Int J Geograph Inform Sci , vol.27 , Issue.10 , pp. 2026-2042
    • Hagenauer, J.1    Helbich, M.2
  • 23
    • 0002059002 scopus 로고    scopus 로고
    • Energy functions for self organizingmaps
    • Oya S, Kaski E (eds) Amsterdam
    • Heskes T (1999) Energy functions for self organizingmaps. In Oya S, Kaski E (eds) KohonenMaps. Elsevier, Amsterdam pp 303-316
    • (1999) KohonenMaps. Elsevier , pp. 303-316
    • Heskes, T.1
  • 24
    • 0035506768 scopus 로고    scopus 로고
    • Self-organization maps, vector quantization, and mixture modeling
    • 10.1109/72.963766
    • Heskes T (2001) Self-organization maps, vector quantization, and mixture modeling. IEEE Trans Neural Netw 12(6):1299-1305
    • (2001) IEEE Trans Neural Netw , vol.12 , Issue.6 , pp. 1299-1305
    • Heskes, T.1
  • 26
    • 84870283667 scopus 로고    scopus 로고
    • A hybrid model of self organizing maps and least square support vector machine for river flow forecasting
    • 10.5194/hess-16-4417-2012
    • Ismail S, Shabri A, Samsudin R (2012) A hybrid model of self organizing maps and least square support vector machine for river flow forecasting. Hydrol Earth Syst Sci 16:4417-4433
    • (2012) Hydrol Earth Syst Sci , vol.16 , pp. 4417-4433
    • Ismail, S.1    Shabri, A.2    Samsudin, R.3
  • 27
    • 84902156599 scopus 로고    scopus 로고
    • Comparing self-organizing maps
    • Springer, Heidelberg
    • Kaski S, Lagus K (1996) Comparing self-organizing maps. Lecture Notes in Computer Science, vol 1112. Springer, Heidelberg, pp 809-814
    • (1996) Lecture Notes in Computer Science , vol.1112 , pp. 809-814
    • Kaski, S.1    Lagus, K.2
  • 30
    • 0019991550 scopus 로고
    • Analysis of a simple self-organizing process
    • 10.1007/BF00317973 0495.93038 667889
    • Kohonen T (1982) Analysis of a simple self-organizing process. Biol Cybern 44:135-140
    • (1982) Biol Cybern , vol.44 , pp. 135-140
    • Kohonen, T.1
  • 34
    • 0001445010 scopus 로고    scopus 로고
    • Solving a class of linearly constrained indefinite quadratic problems by D.C algorithms
    • 10.1023/A:1008288411710 0905.90131
    • Le Thi HA, Pham Dinh T (1997) Solving a class of linearly constrained indefinite quadratic problems by D.C. algorithms. J Glob Optim 11:253-285
    • (1997) J Glob Optim , vol.11 , pp. 253-285
    • Le Thi, H.A.1    Pham Dinh, T.2
  • 35
    • 15244346000 scopus 로고    scopus 로고
    • DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems
    • 10.1007/s10479-004-5022-1 1116.90122 2119311
    • Le Thi HA, Pham Dinh T (2005) DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann Oper Res 133:23-46
    • (2005) Ann Oper Res , vol.133 , pp. 23-46
    • Le Thi, H.A.1    Pham Dinh, T.2
  • 36
    • 79958756941 scopus 로고    scopus 로고
    • Fuzzy clustering based on nonconvex optimization approaches using difference of convex (DC) functions algorithms
    • Le Thi HA, Le Hoai M, Pham Dinh T (2007) Fuzzy clustering based on nonconvex optimization approaches using difference of convex (DC) functions algorithms. J Adv Data Anal Classif 2:1-20
    • (2007) J Adv Data Anal Classif , vol.2 , pp. 1-20
    • Le Thi, H.A.1    Le Hoai, M.2    Pham Dinh, T.3
  • 37
    • 57849147343 scopus 로고    scopus 로고
    • A DC programming approach for feature selection in support vector machines learning
    • 10.1007/s11634-008-0030-7 1284.90057
    • Le Thi HA, Le Hoai M, Nguyen VV, Pham Dinh T (2008) A DC programming approach for feature selection in support vector machines learning. J Adv Data Anal Classif 2(3):259-278
    • (2008) J Adv Data Anal Classif , vol.2 , Issue.3 , pp. 259-278
    • Le Thi, H.A.1    Le Hoai, M.2    Nguyen, V.V.3    Pham Dinh, T.4
  • 38
    • 84880831781 scopus 로고    scopus 로고
    • Binary classification via spherical separator by DC programming and DCA
    • doi: 10.1007/s10898-012-9859-6
    • Le Thi HA, Le Hoai M, Pham Dinh T, Huynh VN (2012) Binary classification via spherical separator by DC programming and DCA. J Glob Optim 1-15. doi: 10.1007/s10898-012-9859-6
    • (2012) J Glob Optim , pp. 1-15
    • Le Thi, H.A.1    Le Hoai, M.2    Pham Dinh, T.3    Huynh, V.N.4
  • 39
    • 84887377768 scopus 로고    scopus 로고
    • Block clustering based on DC programming and DCA
    • 10.1162/NECO-a-00490
    • Le Thi HA, Le Hoai M, Huynh VN (2013) Block clustering based on DC programming and DCA. NECO Neural Comput 25(10):2776-2807
    • (2013) NECO Neural Comput , vol.25 , Issue.10 , pp. 2776-2807
    • Le Thi, H.A.1    Le Hoai, M.2    Huynh, V.N.3
  • 41
    • 84885021555 scopus 로고    scopus 로고
    • New and efficient DCA based algorithms for minimum sum-of-squares clustering
    • 10.1016/j.patcog.2013.07.012
    • Le Thi HA, Le Hoai M, Pham Dinh T (2014) New and efficient DCA based algorithms for minimum sum-of-squares clustering. Patter Recognit 47:388-401
    • (2014) Patter Recognit , vol.47 , pp. 388-401
    • Le Thi, H.A.1    Le Hoai, M.2    Pham Dinh, T.3
  • 44
    • 15944365213 scopus 로고    scopus 로고
    • Multicategory Ψ -learning and support vector machine, computational tools
    • 10.1198/106186005X37238 2137899
    • Liu Y, Shen X, Doss H (2005) Multicategory Ψ -learning and support vector machine, computational tools. J Comput Graph Stat 14:219-236
    • (2005) J Comput Graph Stat , vol.14 , pp. 219-236
    • Liu, Y.1    Shen, X.2    Doss, H.3
  • 45
    • 33745638149 scopus 로고    scopus 로고
    • Multicategory Ψ -learning
    • 10.1198/016214505000000781 2256170
    • Liu Y, Shen X (2006) Multicategory Ψ -learning. J Am Stat Assoc 101(474):500-509
    • (2006) J Am Stat Assoc , vol.101 , Issue.474 , pp. 500-509
    • Liu, Y.1    Shen, X.2
  • 47
    • 84896944956 scopus 로고    scopus 로고
    • Self-organizing maps
    • Springer-Verlag, Berlin, Heidelberg
    • Van Hulle Marc M (2012) Self-organizing maps. Handbook of natural computing. Springer-Verlag, Berlin, Heidelberg, pp 585-622
    • (2012) Handbook of Natural Computing , pp. 585-622
    • Van Hulle Marc, M.1
  • 48
    • 84879562210 scopus 로고    scopus 로고
    • Graph mining based SOM: A tool to analyze economic stability
    • M. Johnsson (eds) InTech Publisher Vienna
    • Marina R (2012) Graph mining based SOM: a tool to analyze economic stability. In: Johnsson M (ed) Applications of self-organizing maps. InTech Publisher, Vienna, pp 1-25
    • (2012) Applications of Self-organizing Maps , pp. 1-25
    • Marina, R.1
  • 52
    • 84893711402 scopus 로고    scopus 로고
    • Self-organizing map formation with a selectively refractory neighborhood
    • 10.1007/s11063-013-9287-8
    • Neme A, Miramontes P (2014) Self-organizing map formation with a selectively refractory neighborhood. Neural Process Lett 39(1):1-24
    • (2014) Neural Process Lett , vol.39 , Issue.1 , pp. 1-24
    • Neme, A.1    Miramontes, P.2
  • 56
    • 84930036527 scopus 로고    scopus 로고
    • Image segmentation by self organizing map with mahalanobis distance
    • Paul S, Gupta M (2013) Image segmentation by self organizing map with mahalanobis distance. Int J Emerg Technol Adv Eng 3(2):288-291
    • (2013) Int J Emerg Technol Adv Eng , vol.3 , Issue.2 , pp. 288-291
    • Paul, S.1    Gupta, M.2
  • 57
    • 0000939953 scopus 로고    scopus 로고
    • Convex analysis approach to D.C programming: Theory, algorithms and applications (dedicated to Professor Hoang Tuy on the occasion of his 70th birthday)
    • 0895.90152 1479751
    • Pham Dinh T, Le Thi HA (1997) Convex analysis approach to D.C. programming: theory, algorithms and applications (dedicated to Professor Hoang Tuy on the occasion of his 70th birthday). Acta Math Vietnam 22:289-355
    • (1997) Acta Math Vietnam , vol.22 , pp. 289-355
    • Pham Dinh, T.1    Le Thi, H.A.2
  • 58
    • 0032081028 scopus 로고    scopus 로고
    • DC optimization algorithms for solving the trust region sub-problem
    • 10.1137/S1052623494274313 0913.65054 1618531
    • Pham Dinh T, Le Thi HA (1998) DC optimization algorithms for solving the trust region sub-problem. SIAM J Optim 8:476-505
    • (1998) SIAM J Optim , vol.8 , pp. 476-505
    • Pham Dinh, T.1    Le Thi, H.A.2
  • 59
    • 84906789253 scopus 로고    scopus 로고
    • The use of self organizing map method and feature selection in image database classification system
    • Pratiwi D (2012) The use of self organizing map method and feature selection in image database classification system. Int J Comput Sci 9(3):377-381
    • (2012) Int J Comput Sci , vol.9 , Issue.3 , pp. 377-381
    • Pratiwi, D.1
  • 60
    • 0141887092 scopus 로고    scopus 로고
    • The collaborative filtering recommendation based on SOM cluster-indexing CBR
    • ISSN 0957-4174, doi: 10.1016/S0957-4174(03)00067-8
    • Roh TH, Oh KJ, Han I (2003) The collaborative filtering recommendation based on SOM cluster-indexing CBR. Expert Syst Appl 25(3):413-423, ISSN 0957-4174, doi: 10.1016/S0957-4174(03)00067-8
    • (2003) Expert Syst Appl , vol.25 , Issue.3 , pp. 413-423
    • Roh, T.H.1    Oh, K.J.2    Han, I.3
  • 62
    • 84906784299 scopus 로고    scopus 로고
    • A new dynamic self-organizing method for mobile robot environment mapping
    • Ruan X, Gao Y, Song H, Chen J (2011) A new dynamic self-organizing method for mobile robot environment mapping. J Intell Learn Syst Appl 3:249-256
    • (2011) J Intell Learn Syst Appl , vol.3 , pp. 249-256
    • Ruan, X.1    Gao, Y.2    Song, H.3    Chen, J.4
  • 63
    • 79955110192 scopus 로고    scopus 로고
    • Self-organising maps in document classification: A comparison with six machine learning methods
    • Springer, Heidelberg
    • Saarikoski J, Laurikkala J, Järvelin K, Juhola M (2011) Self-organising maps in document classification: a comparison with six machine learning methods. Adaptive and natural computing algorithms. Lecture Notes in Computer Science, vol 6593. Springer, Heidelberg, pp 260-269
    • (2011) Adaptive and Natural Computing Algorithms. Lecture Notes in Computer Science , vol.6593 , pp. 260-269
    • Saarikoski, J.L.1
  • 64
    • 79959298608 scopus 로고    scopus 로고
    • Fuzzy clustering of the self-organizing map: Some applications on financial time series
    • Laaksonen J, Honkela T (eds) Springer, Berlin Heidelberg
    • Sarlin P, Eklund T (2011) Fuzzy clustering of the self-organizing map: some applications on financial time series. In: Laaksonen J, Honkela T (eds) Advances in self-organizing maps. Lecture Notes in Computer Science, vol 6731. Springer, Berlin Heidelberg, pp 40-50
    • (2011) Advances in Self-organizing Maps. Lecture Notes in Computer Science , vol.6731 , pp. 40-50
    • Sarlin, P.1    Eklund, T.2
  • 69
    • 84958967653 scopus 로고    scopus 로고
    • Combining the self-organizing map and K-means clustering for on-line classification of sensor data
    • Springer, Heidelberg
    • Van Laerhoven K (2001) Combining the self-organizing map and K-means clustering for on-line classification of sensor data. Artificial neural networks ICANN 2001. Lecture Notes in Computer Science, vol 2130. Springer, Heidelberg, pp 464-469
    • (2001) Artificial Neural Networks ICANN 2001. Lecture Notes in Computer Science , vol.2130 , pp. 464-469
    • Van Laerhoven, K.1
  • 70
    • 23944466915 scopus 로고    scopus 로고
    • A self-organizing map based knowledge discovery for music recommendation systems
    • Springer-Verlag, Berlin Heidelberg
    • Vembu S, Baumann S (2004) A self-organizing map based knowledge discovery for music recommendation systems. Computer music modeling and retrieval. Lecture Notes in Computer Science, vol 3310. Springer-Verlag, Berlin Heidelberg, pp 119-129
    • (2004) Computer Music Modeling and Retrieval. Lecture Notes in Computer Science , vol.3310 , pp. 119-129
    • Vembu, S.1    Baumann, S.2
  • 74
    • 44849094485 scopus 로고    scopus 로고
    • The self-organizing maps: Background, theories, extensions and applications
    • 10.1007/978-3-540-78293-3-17
    • Yin H (2008) The self-organizing maps: background, theories, extensions and applications. Stud Comput Intell (SCI) 115:715-762
    • (2008) Stud Comput Intell (SCI) , vol.115 , pp. 715-762
    • Yin, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.