-
1
-
-
0027453616
-
Model-based gaussian and non gaussian clustering
-
Banfield, J. D., & Raftery, A. E. (1993). Model-based gaussian and non gaussian clustering. Biometrics, 49, 803-821.
-
(1993)
Biometrics
, vol.49
, pp. 803-821
-
-
Banfield, J.D.1
Raftery, A.E.2
-
2
-
-
0003543198
-
Fuzzy mathematics in pattern classification
-
Unpublished doctoral dissertation, Cornell University, Ithaca, NY
-
Bezdek, J. C. (1973). Fuzzy mathematics in pattern classification. Unpublished doctoral dissertation, Cornell University, Ithaca, NY.
-
(1973)
-
-
Bezdek, J.C.1
-
3
-
-
0004008854
-
Pattern recognition with fuzzy objective function algorithm
-
New York: Plenum Press
-
Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithm. New York: Plenum Press.
-
(1981)
-
-
Bezdek, J.C.1
-
4
-
-
0035923521
-
Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
-
Bhattacharjee, A., Richards, W. G., Staunton, J., Li, C., Monti, S., Vasa, P., et al. (2001). Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. USA, 98(24), 13790-13795.
-
(2001)
Proc. Natl. Acad. Sci. USA
, vol.98
, Issue.24
, pp. 13790-13795
-
-
Bhattacharjee, A.1
Richards, W.G.2
Staunton, J.3
Li, C.4
Monti, S.5
Vasa, P.6
-
5
-
-
0002709342
-
Feature selection via concave minimization and support vector machines
-
In J. Shavlik (Ed.), Machine Learning Proceedings of the Fifteenth International Conferences , San Francisco: Morgan Kaufmann
-
Bradley, B. S., & Mangasarian, O. L. (1998). Feature selection via concave minimization and support vector machines. In J. Shavlik (Ed.), Machine Learning Proceedings of the Fifteenth International Conferences (pp. 82-90). San Francisco: Morgan Kaufmann.
-
(1998)
, pp. 82-90
-
-
Bradley, B.S.1
Mangasarian, O.L.2
-
6
-
-
0001626339
-
A classification EM algorithm for clustering and two stochastic versions
-
Celeux, G., & Govaert, G. (1992). A classification EM algorithm for clustering and two stochastic versions. Comput. Statist. Data Anal., 14(3), 315-332.
-
(1992)
Comput. Statist. Data Anal.
, vol.14
, Issue.3
, pp. 315-332
-
-
Celeux, G.1
Govaert, G.2
-
7
-
-
21844491996
-
Comparison of the mixture and the classification maximum likelihood in cluster analysis
-
Celeux, G., & Govaert, G. (1993). Comparison of the mixture and the classification maximum likelihood in cluster analysis. J. Stat. Comput. Simul., 47, 127-146.
-
(1993)
J. Stat. Comput. Simul.
, vol.47
, pp. 127-146
-
-
Celeux, G.1
Govaert, G.2
-
8
-
-
34250704272
-
Trading convexity for scalability
-
In Proceedings of the 23rd International Conference on Machine Learning. NewYork: ACM
-
Collobert, R., Sinz, F., Weston, J., & Bottou, L. (2006). Trading convexity for scalability. In Proceedings of the 23rd International Conference on Machine Learning. NewYork: ACM.
-
(2006)
-
-
Collobert, R.1
Sinz, F.2
Weston, J.3
Bottou, L.4
-
9
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1-38.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
10
-
-
0036487282
-
Clustering with block mixture models
-
Govaert, G., & Nadif, M. (2003). Clustering with block mixture models. Pattern Recognition, 36, 463-473.
-
(2003)
Pattern Recognition
, vol.36
, pp. 463-473
-
-
Govaert, G.1
Nadif, M.2
-
11
-
-
39149141568
-
Block clustering with Bernoulli mixture models: Comparison of different approaches
-
Govaert, G., & Nadif, M. (2008). Block clustering with Bernoulli mixture models: Comparison of different approaches. Computational Statistics and Data Analysis, 52, 3233-3245.
-
(2008)
Computational Statistics and Data Analysis
, vol.52
, pp. 3233-3245
-
-
Govaert, G.1
Nadif, M.2
-
12
-
-
0004185151
-
Clustering algorithms
-
NewYork: Wiley
-
Hartigan, J. A. (1975). Clustering algorithms. NewYork: Wiley.
-
(1975)
-
-
Hartigan, J.A.1
-
13
-
-
14344255186
-
Leveraging the margin more carefully
-
In Proceedings of the International Conference on Machine Learning ICML'04. San Mateo, CA: Morgan Kaufmann
-
Krause, N., & Singer, Y. (2004). Leveraging the margin more carefully. In Proceedings of the International Conference on Machine Learning ICML'04. San Mateo, CA: Morgan Kaufmann.
-
(2004)
-
-
Krause, N.1
Singer, Y.2
-
14
-
-
84874620794
-
DC Programming and DCA
-
Le Thi, H. A. (N.d.). DC Programming and DCA. http://lita.sciences.univ-metz.fr/lethi.
-
-
-
Le Thi, H.A.1
-
15
-
-
0242648619
-
Contributiona l'optimisation non convexe et l'optimisation globale: Théorie, algorithmes et applications
-
Habilitationa Diriger des Recherches, Universite de Rouen
-
Le Thi, H. A. (1997). Contributiona l'optimisation non convexe et l'optimisation globale: Théorie, algorithmes et applications. Habilitationa Diriger des Recherches, Universite de Rouen.
-
(1997)
-
-
Le Thi, H.A.1
-
16
-
-
33847251003
-
A new efficient algorithm based on DC programming and DCA for clustering
-
Le Thi, H. A., Belghiti, T., & Pham Dinh, T. (2006). A new efficient algorithm based on DC programming and DCA for clustering. Journal of Global Optimization, 37, 593-608.
-
(2006)
Journal of Global Optimization
, vol.37
, pp. 593-608
-
-
Le Thi, H.A.1
Belghiti, T.2
Pham Dinh, T.3
-
17
-
-
57849147343
-
A DC programming approach for feature selection in support vector machine learning
-
Le Thi, H. A., Le, H. M., Nguyen, V. V., & Pham Dinh, T. (2008). A DC programming approach for feature selection in support vector machine learning. Journal of Advances in Data Analysis and Classification, 2(3), 259-278.
-
(2008)
Journal of Advances in Data Analysis and Classification
, vol.2
, Issue.3
, pp. 259-278
-
-
Le Thi, H.A.1
Le, H.M.2
Nguyen, V.V.3
Pham Dinh, T.4
-
18
-
-
34447102036
-
Optimization based DC programming andDCAfor hierarchical clustering
-
Le Thi, H. A., Le, H. M., & Pham Dinh, T. (2006). Optimization based DC programming andDCAfor hierarchical clustering. European Journal ofOperational Research, 183, 1067-1085.
-
(2006)
European Journal ofOperational Research
, vol.183
, pp. 1067-1085
-
-
Le Thi, H.A.1
Le, H.M.2
Pham Dinh, T.3
-
19
-
-
79958756941
-
Fuzzy clustering based on nonconvex optimisation approaches using difference of convex (DC) functions algorithms
-
Le Thi, H. A., Le, H. M., & Pham Dinh, T. (2007). Fuzzy clustering based on nonconvex optimisation approaches using difference of convex (DC) functions algorithms. Journal of Advances in Data Analysis and Classification, 2, 1-20.
-
(2007)
Journal of Advances in Data Analysis and Classification
, vol.2
, pp. 1-20
-
-
Le Thi, H.A.1
Le, H.M.2
Pham Dinh, T.3
-
20
-
-
68849101248
-
Gene selection for cancer classification using DCA
-
In Proceedings of the 4th International Conference on Advanced Data Mining and Classification , New York: Springer-Verlag
-
Le Thi, H. A., Nguyen, V. V., & Ouchani, S. (2008). Gene selection for cancer classification using DCA. In Proceedings of the 4th International Conference on Advanced Data Mining and Classification (pp. 62-72). New York: Springer-Verlag.
-
(2008)
, pp. 62-72
-
-
Le Thi, H.A.1
Nguyen, V.V.2
Ouchani, S.3
-
21
-
-
0001445010
-
Solving a class of linearly constrained indefinite quadratic problems by DC algorithms
-
Le Thi, H. A., & Pham Dinh, T. (1997). Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. Journal of Global Optimization, 11(3), 253-285.
-
(1997)
Journal of Global Optimization
, vol.11
, Issue.3
, pp. 253-285
-
-
Le Thi, H.A.1
Pham Dinh, T.2
-
22
-
-
15244346000
-
The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems
-
Le Thi, H. A., & Pham Dinh, T. (2005). The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Annals of Operations Research, 133, 23-46.
-
(2005)
Annals of Operations Research
, vol.133
, pp. 23-46
-
-
Le Thi, H.A.1
Pham Dinh, T.2
-
23
-
-
84859231961
-
Exact penalty techniques in DC programming
-
Le Thi, H. A., Pham Dinh, T., & Huynh, V. N. (2012). Exact penalty techniques in DC programming. Journal of Global Optimization, 52(3), 509-535.
-
(2012)
Journal of Global Optimization
, vol.52
, Issue.3
, pp. 509-535
-
-
Le Thi, H.A.1
Pham Dinh, T.2
Huynh, V.N.3
-
25
-
-
15944365213
-
Multicategory ψ-learning and support vector machine: Computational tools
-
Liu, Y., Shen, X., & Doss, H. (2005). Multicategory ψ-learning and support vector machine: Computational tools. Journal of Computational and Graphical Statistics, 14, 219-236.
-
(2005)
Journal of Computational and Graphical Statistics
, vol.14
, pp. 219-236
-
-
Liu, Y.1
Shen, X.2
Doss, H.3
-
26
-
-
6444228650
-
Two-mode clustering methods: A structured overview
-
Mechelen, V., Bock, H. H., & De Boeck, P. (2004). Two-mode clustering methods: A structured overview. Statistical Methods in Medical Research, 13, 363-394.
-
(2004)
Statistical Methods in Medical Research
, vol.13
, pp. 363-394
-
-
Mechelen, V.1
Bock, H.H.2
De Boeck, P.3
-
27
-
-
35048871635
-
SVM-based feature selection by direct objective minimisation
-
In Proc. of 26th DAGM Symposium , New York: Springer-Verlag
-
Neumann, J., Schnörr, C., & Steidl, G. (2004). SVM-based feature selection by direct objective minimisation. In Proc. of 26th DAGM Symposium (pp. 212-219). New York: Springer-Verlag.
-
(2004)
, pp. 212-219
-
-
Neumann, J.1
Schnörr, C.2
Steidl, G.3
-
28
-
-
0037381008
-
Gene expression-based classification ofmalignant gliomas correlates better with survival than histological classification
-
Nutt, C. L., Mani, D. R., Betensky, R. A., Tamayo, P., Cairncross, J. G., Ladd, C., et al. (2003). Gene expression-based classification ofmalignant gliomas correlates better with survival than histological classification. Cancer Res., 63(7), 1602-1607.
-
(2003)
Cancer Res.
, vol.63
, Issue.7
, pp. 1602-1607
-
-
Nutt, C.L.1
Mani, D.R.2
Betensky, R.A.3
Tamayo, P.4
Cairncross, J.G.5
Ladd, C.6
-
29
-
-
84880232279
-
Learning with sparsity by difference of convex functions algorithm
-
doi:10.1080/10556788.2011.652630
-
Ong, C. S., & Le Thi, H. A. (2011). Learning with sparsity by difference of convex functions algorithm. J. Optimization Methods and Software. doi:10.1080/10556788.2011.652630
-
(2011)
J. Optimization Methods and Software
-
-
Ong, C.S.1
Le Thi, H.A.2
-
30
-
-
0032081028
-
DC optimization algorithms for solving the trust region subproblem
-
Pham Dinh, T., & Le Thi, H. A. (1998). DC optimization algorithms for solving the trust region subproblem. SIAM J. Optimization, 8, 476-505.
-
(1998)
SIAM J. Optimization
, vol.8
, pp. 476-505
-
-
Pham Dinh, T.1
Le Thi, H.A.2
-
31
-
-
0037165140
-
Prediction of central nervous system embryonal tumour outcome based on gene expression
-
Pomeroy, S. L., Tamayo, P., Gaasenbeek, M., Sturla, L. M, Angelo, M., McLaughlin, M. E., et al. (2002). Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 415, 436-442.
-
(2002)
Nature
, vol.415
, pp. 436-442
-
-
Pomeroy, S.L.1
Tamayo, P.2
Gaasenbeek, M.3
Sturla, L.M.4
Angelo, M.5
McLaughlin, M.E.6
-
32
-
-
0347201147
-
Multiclass cancer diagnosis using tumor gene expression signatures
-
Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C. H., Angelo, M., et al. (2001). Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl. Acad. Sci. USA, 98, 15149-15154.
-
(2001)
Proc. Natl. Acad. Sci. USA
, vol.98
, pp. 15149-15154
-
-
Ramaswamy, S.1
Tamayo, P.2
Rifkin, R.3
Mukherjee, S.4
Yeang, C.H.5
Angelo, M.6
-
33
-
-
62849087431
-
Global optimization strategies for two-mode clustering
-
(Rep., EI-2005-33). Econometric Institute
-
Rosmalen, J. V., Groenen, P. J. F., Trejos, J., & Castillo, W. (2005). Global optimization strategies for two-mode clustering (Rep., EI-2005-33). Econometric Institute.
-
(2005)
-
-
Rosmalen, J.V.1
Groenen, P.J.F.2
Trejos, J.3
Castillo, W.4
-
34
-
-
0242679446
-
ψ-learning
-
Shen, X., Tseng, G. C., Zhang, X., & Wong, W. H. (2003). ψ-learning. Journal of American Statistical Association, 98, 724-734.
-
(2003)
Journal of American Statistical Association
, vol.98
, pp. 724-734
-
-
Shen, X.1
Tseng, G.C.2
Zhang, X.3
Wong, W.H.4
-
35
-
-
0002643871
-
Clustering criteria and multivariate normal mixtures
-
Symons, M. J. (1981). Clustering criteria and multivariate normal mixtures. Biometrics, 37, 35-43.
-
(1981)
Biometrics
, vol.37
, pp. 35-43
-
-
Symons, M.J.1
-
36
-
-
33745803255
-
Prior learning and convex-concave regularization of binary tomography
-
Weber, S., Schüle, T., & Schnörr, C. (2005). Prior learning and convex-concave regularization of binary tomography. Electr. Notes in Discr. Math., 20, 313-327.
-
(2005)
Electr. Notes in Discr. Math.
, vol.20
, pp. 313-327
-
-
Weber, S.1
Schüle, T.2
Schnörr, C.3
-
37
-
-
77951160349
-
The convex concave procedure (CCCP)
-
In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14. Cambridge, MA: MIT Press
-
Yuille, A. L., & Rangarajan, A. (2002). The convex concave procedure (CCCP). In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14. Cambridge, MA: MIT Press.
-
(2002)
-
-
Yuille, A.L.1
Rangarajan, A.2
|