메뉴 건너뛰기




Volumn 25, Issue 10, 2013, Pages 2776-2807

Block clustering based on difference of convex functions (DC) programming and DC algorithms

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; BRAIN TUMOR; CLUSTER ANALYSIS; COMPUTER PROGRAM; COMPUTER SIMULATION; FACTUAL DATABASE; FUZZY LOGIC; HUMAN; LUNG TUMOR; NEOPLASM; PATHOLOGY; PROBLEM SOLVING;

EID: 84887377768     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00490     Document Type: Article
Times cited : (11)

References (37)
  • 1
    • 0027453616 scopus 로고
    • Model-based gaussian and non gaussian clustering
    • Banfield, J. D., & Raftery, A. E. (1993). Model-based gaussian and non gaussian clustering. Biometrics, 49, 803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 2
    • 0003543198 scopus 로고
    • Fuzzy mathematics in pattern classification
    • Unpublished doctoral dissertation, Cornell University, Ithaca, NY
    • Bezdek, J. C. (1973). Fuzzy mathematics in pattern classification. Unpublished doctoral dissertation, Cornell University, Ithaca, NY.
    • (1973)
    • Bezdek, J.C.1
  • 3
    • 0004008854 scopus 로고
    • Pattern recognition with fuzzy objective function algorithm
    • New York: Plenum Press
    • Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithm. New York: Plenum Press.
    • (1981)
    • Bezdek, J.C.1
  • 4
    • 0035923521 scopus 로고    scopus 로고
    • Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
    • Bhattacharjee, A., Richards, W. G., Staunton, J., Li, C., Monti, S., Vasa, P., et al. (2001). Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. USA, 98(24), 13790-13795.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , Issue.24 , pp. 13790-13795
    • Bhattacharjee, A.1    Richards, W.G.2    Staunton, J.3    Li, C.4    Monti, S.5    Vasa, P.6
  • 5
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization and support vector machines
    • In J. Shavlik (Ed.), Machine Learning Proceedings of the Fifteenth International Conferences , San Francisco: Morgan Kaufmann
    • Bradley, B. S., & Mangasarian, O. L. (1998). Feature selection via concave minimization and support vector machines. In J. Shavlik (Ed.), Machine Learning Proceedings of the Fifteenth International Conferences (pp. 82-90). San Francisco: Morgan Kaufmann.
    • (1998) , pp. 82-90
    • Bradley, B.S.1    Mangasarian, O.L.2
  • 6
    • 0001626339 scopus 로고
    • A classification EM algorithm for clustering and two stochastic versions
    • Celeux, G., & Govaert, G. (1992). A classification EM algorithm for clustering and two stochastic versions. Comput. Statist. Data Anal., 14(3), 315-332.
    • (1992) Comput. Statist. Data Anal. , vol.14 , Issue.3 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 7
    • 21844491996 scopus 로고
    • Comparison of the mixture and the classification maximum likelihood in cluster analysis
    • Celeux, G., & Govaert, G. (1993). Comparison of the mixture and the classification maximum likelihood in cluster analysis. J. Stat. Comput. Simul., 47, 127-146.
    • (1993) J. Stat. Comput. Simul. , vol.47 , pp. 127-146
    • Celeux, G.1    Govaert, G.2
  • 8
    • 34250704272 scopus 로고    scopus 로고
    • Trading convexity for scalability
    • In Proceedings of the 23rd International Conference on Machine Learning. NewYork: ACM
    • Collobert, R., Sinz, F., Weston, J., & Bottou, L. (2006). Trading convexity for scalability. In Proceedings of the 23rd International Conference on Machine Learning. NewYork: ACM.
    • (2006)
    • Collobert, R.1    Sinz, F.2    Weston, J.3    Bottou, L.4
  • 10
    • 0036487282 scopus 로고    scopus 로고
    • Clustering with block mixture models
    • Govaert, G., & Nadif, M. (2003). Clustering with block mixture models. Pattern Recognition, 36, 463-473.
    • (2003) Pattern Recognition , vol.36 , pp. 463-473
    • Govaert, G.1    Nadif, M.2
  • 11
    • 39149141568 scopus 로고    scopus 로고
    • Block clustering with Bernoulli mixture models: Comparison of different approaches
    • Govaert, G., & Nadif, M. (2008). Block clustering with Bernoulli mixture models: Comparison of different approaches. Computational Statistics and Data Analysis, 52, 3233-3245.
    • (2008) Computational Statistics and Data Analysis , vol.52 , pp. 3233-3245
    • Govaert, G.1    Nadif, M.2
  • 12
    • 0004185151 scopus 로고
    • Clustering algorithms
    • NewYork: Wiley
    • Hartigan, J. A. (1975). Clustering algorithms. NewYork: Wiley.
    • (1975)
    • Hartigan, J.A.1
  • 13
    • 14344255186 scopus 로고    scopus 로고
    • Leveraging the margin more carefully
    • In Proceedings of the International Conference on Machine Learning ICML'04. San Mateo, CA: Morgan Kaufmann
    • Krause, N., & Singer, Y. (2004). Leveraging the margin more carefully. In Proceedings of the International Conference on Machine Learning ICML'04. San Mateo, CA: Morgan Kaufmann.
    • (2004)
    • Krause, N.1    Singer, Y.2
  • 14
    • 84874620794 scopus 로고    scopus 로고
    • DC Programming and DCA
    • Le Thi, H. A. (N.d.). DC Programming and DCA. http://lita.sciences.univ-metz.fr/lethi.
    • Le Thi, H.A.1
  • 15
    • 0242648619 scopus 로고    scopus 로고
    • Contributiona l'optimisation non convexe et l'optimisation globale: Théorie, algorithmes et applications
    • Habilitationa Diriger des Recherches, Universite de Rouen
    • Le Thi, H. A. (1997). Contributiona l'optimisation non convexe et l'optimisation globale: Théorie, algorithmes et applications. Habilitationa Diriger des Recherches, Universite de Rouen.
    • (1997)
    • Le Thi, H.A.1
  • 16
    • 33847251003 scopus 로고    scopus 로고
    • A new efficient algorithm based on DC programming and DCA for clustering
    • Le Thi, H. A., Belghiti, T., & Pham Dinh, T. (2006). A new efficient algorithm based on DC programming and DCA for clustering. Journal of Global Optimization, 37, 593-608.
    • (2006) Journal of Global Optimization , vol.37 , pp. 593-608
    • Le Thi, H.A.1    Belghiti, T.2    Pham Dinh, T.3
  • 18
    • 34447102036 scopus 로고    scopus 로고
    • Optimization based DC programming andDCAfor hierarchical clustering
    • Le Thi, H. A., Le, H. M., & Pham Dinh, T. (2006). Optimization based DC programming andDCAfor hierarchical clustering. European Journal ofOperational Research, 183, 1067-1085.
    • (2006) European Journal ofOperational Research , vol.183 , pp. 1067-1085
    • Le Thi, H.A.1    Le, H.M.2    Pham Dinh, T.3
  • 19
    • 79958756941 scopus 로고    scopus 로고
    • Fuzzy clustering based on nonconvex optimisation approaches using difference of convex (DC) functions algorithms
    • Le Thi, H. A., Le, H. M., & Pham Dinh, T. (2007). Fuzzy clustering based on nonconvex optimisation approaches using difference of convex (DC) functions algorithms. Journal of Advances in Data Analysis and Classification, 2, 1-20.
    • (2007) Journal of Advances in Data Analysis and Classification , vol.2 , pp. 1-20
    • Le Thi, H.A.1    Le, H.M.2    Pham Dinh, T.3
  • 20
    • 68849101248 scopus 로고    scopus 로고
    • Gene selection for cancer classification using DCA
    • In Proceedings of the 4th International Conference on Advanced Data Mining and Classification , New York: Springer-Verlag
    • Le Thi, H. A., Nguyen, V. V., & Ouchani, S. (2008). Gene selection for cancer classification using DCA. In Proceedings of the 4th International Conference on Advanced Data Mining and Classification (pp. 62-72). New York: Springer-Verlag.
    • (2008) , pp. 62-72
    • Le Thi, H.A.1    Nguyen, V.V.2    Ouchani, S.3
  • 21
    • 0001445010 scopus 로고    scopus 로고
    • Solving a class of linearly constrained indefinite quadratic problems by DC algorithms
    • Le Thi, H. A., & Pham Dinh, T. (1997). Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. Journal of Global Optimization, 11(3), 253-285.
    • (1997) Journal of Global Optimization , vol.11 , Issue.3 , pp. 253-285
    • Le Thi, H.A.1    Pham Dinh, T.2
  • 22
    • 15244346000 scopus 로고    scopus 로고
    • The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems
    • Le Thi, H. A., & Pham Dinh, T. (2005). The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Annals of Operations Research, 133, 23-46.
    • (2005) Annals of Operations Research , vol.133 , pp. 23-46
    • Le Thi, H.A.1    Pham Dinh, T.2
  • 25
    • 15944365213 scopus 로고    scopus 로고
    • Multicategory ψ-learning and support vector machine: Computational tools
    • Liu, Y., Shen, X., & Doss, H. (2005). Multicategory ψ-learning and support vector machine: Computational tools. Journal of Computational and Graphical Statistics, 14, 219-236.
    • (2005) Journal of Computational and Graphical Statistics , vol.14 , pp. 219-236
    • Liu, Y.1    Shen, X.2    Doss, H.3
  • 27
    • 35048871635 scopus 로고    scopus 로고
    • SVM-based feature selection by direct objective minimisation
    • In Proc. of 26th DAGM Symposium , New York: Springer-Verlag
    • Neumann, J., Schnörr, C., & Steidl, G. (2004). SVM-based feature selection by direct objective minimisation. In Proc. of 26th DAGM Symposium (pp. 212-219). New York: Springer-Verlag.
    • (2004) , pp. 212-219
    • Neumann, J.1    Schnörr, C.2    Steidl, G.3
  • 28
    • 0037381008 scopus 로고    scopus 로고
    • Gene expression-based classification ofmalignant gliomas correlates better with survival than histological classification
    • Nutt, C. L., Mani, D. R., Betensky, R. A., Tamayo, P., Cairncross, J. G., Ladd, C., et al. (2003). Gene expression-based classification ofmalignant gliomas correlates better with survival than histological classification. Cancer Res., 63(7), 1602-1607.
    • (2003) Cancer Res. , vol.63 , Issue.7 , pp. 1602-1607
    • Nutt, C.L.1    Mani, D.R.2    Betensky, R.A.3    Tamayo, P.4    Cairncross, J.G.5    Ladd, C.6
  • 29
    • 84880232279 scopus 로고    scopus 로고
    • Learning with sparsity by difference of convex functions algorithm
    • doi:10.1080/10556788.2011.652630
    • Ong, C. S., & Le Thi, H. A. (2011). Learning with sparsity by difference of convex functions algorithm. J. Optimization Methods and Software. doi:10.1080/10556788.2011.652630
    • (2011) J. Optimization Methods and Software
    • Ong, C.S.1    Le Thi, H.A.2
  • 30
    • 0032081028 scopus 로고    scopus 로고
    • DC optimization algorithms for solving the trust region subproblem
    • Pham Dinh, T., & Le Thi, H. A. (1998). DC optimization algorithms for solving the trust region subproblem. SIAM J. Optimization, 8, 476-505.
    • (1998) SIAM J. Optimization , vol.8 , pp. 476-505
    • Pham Dinh, T.1    Le Thi, H.A.2
  • 31
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumour outcome based on gene expression
    • Pomeroy, S. L., Tamayo, P., Gaasenbeek, M., Sturla, L. M, Angelo, M., McLaughlin, M. E., et al. (2002). Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 415, 436-442.
    • (2002) Nature , vol.415 , pp. 436-442
    • Pomeroy, S.L.1    Tamayo, P.2    Gaasenbeek, M.3    Sturla, L.M.4    Angelo, M.5    McLaughlin, M.E.6
  • 33
    • 62849087431 scopus 로고    scopus 로고
    • Global optimization strategies for two-mode clustering
    • (Rep., EI-2005-33). Econometric Institute
    • Rosmalen, J. V., Groenen, P. J. F., Trejos, J., & Castillo, W. (2005). Global optimization strategies for two-mode clustering (Rep., EI-2005-33). Econometric Institute.
    • (2005)
    • Rosmalen, J.V.1    Groenen, P.J.F.2    Trejos, J.3    Castillo, W.4
  • 35
    • 0002643871 scopus 로고
    • Clustering criteria and multivariate normal mixtures
    • Symons, M. J. (1981). Clustering criteria and multivariate normal mixtures. Biometrics, 37, 35-43.
    • (1981) Biometrics , vol.37 , pp. 35-43
    • Symons, M.J.1
  • 36
    • 33745803255 scopus 로고    scopus 로고
    • Prior learning and convex-concave regularization of binary tomography
    • Weber, S., Schüle, T., & Schnörr, C. (2005). Prior learning and convex-concave regularization of binary tomography. Electr. Notes in Discr. Math., 20, 313-327.
    • (2005) Electr. Notes in Discr. Math. , vol.20 , pp. 313-327
    • Weber, S.1    Schüle, T.2    Schnörr, C.3
  • 37
    • 77951160349 scopus 로고    scopus 로고
    • The convex concave procedure (CCCP)
    • In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14. Cambridge, MA: MIT Press
    • Yuille, A. L., & Rangarajan, A. (2002). The convex concave procedure (CCCP). In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14. Cambridge, MA: MIT Press.
    • (2002)
    • Yuille, A.L.1    Rangarajan, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.