메뉴 건너뛰기




Volumn 115, Issue , 2008, Pages 715-762

The self-organizing maps: Background, theories, extensions and applications

Author keywords

[No Author keywords available]

Indexed keywords


EID: 44849094485     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-540-78293-3_17     Document Type: Article
Times cited : (162)

References (129)
  • 2
    • 4644322621 scopus 로고    scopus 로고
    • Self-organising maps for pattern recognition
    • Oja E, Kaski S eds, Elsevier, Amsterdam, The Netherlands
    • Allinson NM, Yin H (1999) Self-organising maps for pattern recognition. In: Oja E, Kaski S (eds.) Kohonen Maps, Elsevier, Amsterdam, The Netherlands: 111-120.
    • (1999) Kohonen Maps , pp. 111-120
    • Allinson, N.M.1    Yin, H.2
  • 3
    • 0019153650 scopus 로고
    • Topographic organisation of nerve fields
    • Ameri S-I (1980) Topographic organisation of nerve fields. Bulletin Mathematical Biology, 42: 339-364.
    • (1980) Bulletin Mathematical Biology , vol.42 , pp. 339-364
    • Ameri, S.-I.1
  • 4
    • 2342599235 scopus 로고    scopus 로고
    • Kernel-Kohonen networks
    • Andras P (2002) Kernel-Kohonen networks. Intl. J. Neural Systems, 12: 117-135.
    • (2002) Intl. J. Neural Systems , vol.12 , pp. 117-135
    • Andras, P.1
  • 5
    • 0002725153 scopus 로고
    • Ice floe identification in satellite images using mathematical morphology and clustering about principal curves
    • Banfield JD, Raftery AE (1992) Ice floe identification in satellite images using mathematical morphology and clustering about principal curves. J. American Statistical Association, 87: 7-16.
    • (1992) J. American Statistical Association , vol.87 , pp. 7-16
    • Banfield, J.D.1    Raftery, A.E.2
  • 7
    • 0026898892 scopus 로고
    • Quantifying the neighborhood preservation of self-organizing feature maps
    • Bauer H-U, Pawelzik KR (1992) Quantifying the neighborhood preservation of self-organizing feature maps. IEEE Trans. Neural Networks, 3: 570-579.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 570-579
    • Bauer, H.-U.1    Pawelzik, K.R.2
  • 12
    • 0022576674 scopus 로고
    • A stochastic model of retinotopy: A self-organising process
    • Cottrell M, Fort JC (1986) A stochastic model of retinotopy: A self-organising process. Biological Cybernetics, 53: 405-411.
    • (1986) Biological Cybernetics , vol.53 , pp. 405-411
    • Cottrell, M.1    Fort, J.C.2
  • 15
    • 0036790872 scopus 로고    scopus 로고
    • Statistical tools to assess the reliability of self-organising maps
    • de Bolt E, Cottrell M, Verleysen M (2002) Statistical tools to assess the reliability of self-organising maps. Neural Networks, 15: 967-978.
    • (2002) Neural Networks , vol.15 , pp. 967-978
    • de Bolt, E.1    Cottrell, M.2    Verleysen, M.3
  • 16
    • 0031270961 scopus 로고    scopus 로고
    • Sammon mapping using neural networks: A comparison
    • De Ridder D, Duin RPW (1997) Sammon mapping using neural networks: A comparison. Pattern Recognition Letters, 18: 1307-1316.
    • (1997) Pattern Recognition Letters , vol.18 , pp. 1307-1316
    • De Ridder, D.1    Duin, R.P.W.2
  • 17
    • 0029203539 scopus 로고
    • Asymptotic level density in topological feature maps
    • Dersch DR, Tavan P (1995) Asymptotic level density in topological feature maps. IEEE Trans. Neural Networks, 6: 230-236.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 230-236
    • Dersch, D.R.1    Tavan, P.2
  • 18
    • 0025014537 scopus 로고
    • A dimension reduction framework for understanding cortical maps
    • Durbin R, Mitchison G (1990) A dimension reduction framework for understanding cortical maps. Nature, 343: 644-647.
    • (1990) Nature , vol.343 , pp. 644-647
    • Durbin, R.1    Mitchison, G.2
  • 19
    • 0026436795 scopus 로고
    • Self-organising maps: Ordering, convergence properties and energy functions
    • Erwin E, Obermayer K, Schulten K (1992) Self-organising maps: Ordering, convergence properties and energy functions. Biological Cybernetics 67: 47-55.
    • (1992) Biological Cybernetics , vol.67 , pp. 47-55
    • Erwin, E.1    Obermayer, K.2    Schulten, K.3
  • 20
    • 0026462366 scopus 로고
    • Self-organising maps: Stationary states, metastability and convergence rate
    • Erwin E, Obermayer K, Schulten K (1992) Self-organising maps: Stationary states, metastability and convergence rate. Biological Cybernetics 67: 35-45.
    • (1992) Biological Cybernetics , vol.67 , pp. 35-45
    • Erwin, E.1    Obermayer, K.2    Schulten, K.3
  • 21
    • 33746593726 scopus 로고    scopus 로고
    • Online data visualization using the neural gas network
    • Estévez PA, Figueroa CJ (2006) Online data visualization using the neural gas network. Neural Networks, 19: 923-934.
    • (2006) Neural Networks , vol.19 , pp. 923-934
    • Estévez, P.A.1    Figueroa, C.J.2
  • 23
    • 9144269130 scopus 로고    scopus 로고
    • Adaptive topological tree structure (ATTS) for document organisation and visualisation
    • Freeman R, Yin H (2004) Adaptive topological tree structure (ATTS) for document organisation and visualisation. Neural Networks, 17: 1255-1271.
    • (2004) Neural Networks , vol.17 , pp. 1255-1271
    • Freeman, R.1    Yin, H.2
  • 25
    • 0000687284 scopus 로고    scopus 로고
    • A unifying objective function for topographic mappings
    • Goodhill GJ, Sejnowski T (1997) A unifying objective function for topographic mappings. Neural Computation, 9: 1291-1303.
    • (1997) Neural Computation , vol.9 , pp. 1291-1303
    • Goodhill, G.J.1    Sejnowski, T.2
  • 26
    • 0000787409 scopus 로고    scopus 로고
    • Phase transitions in stochastic self-organizing maps
    • Graepel T, Burger M, Obermayer K (1997) Phase transitions in stochastic self-organizing maps. Physics Reviews E, 56: 3876-3890.
    • (1997) Physics Reviews E , vol.56 , pp. 3876-3890
    • Graepel, T.1    Burger, M.2    Obermayer, K.3
  • 27
    • 0036790850 scopus 로고    scopus 로고
    • Image denoising using self-organising map-based nonlinear independent component analysis
    • Haritopoulos M, Yin H, Allinson NM (2002) Image denoising using self-organising map-based nonlinear independent component analysis. Neural Networks, 15: 1085-1098.
    • (2002) Neural Networks , vol.15 , pp. 1085-1098
    • Haritopoulos, M.1    Yin, H.2    Allinson, N.M.3
  • 31
    • 44849097458 scopus 로고    scopus 로고
    • Herrmann M, Yang H (1996) Perspectives and limitations of self-organising maps in blind separation of source signals. In: Amari S-I, Xu L, Chan L-W, KIng I, Leung K-S (eds.) Proc. Intl. Conf. Neural Information Processing (ICONIP'96), 24-27 September, Hong Kong. Springer-Verlag, Singapore: 1211-1216.
    • Herrmann M, Yang H (1996) Perspectives and limitations of self-organising maps in blind separation of source signals. In: Amari S-I, Xu L, Chan L-W, KIng I, Leung K-S (eds.) Proc. Intl. Conf. Neural Information Processing (ICONIP'96), 24-27 September, Hong Kong. Springer-Verlag, Singapore: 1211-1216.
  • 32
    • 0002059002 scopus 로고    scopus 로고
    • Energy functions for self-organizing maps
    • Oja E, Kaski S eds, Elsevier, Amsterdam
    • Heskes T (1999) Energy functions for self-organizing maps, In: Oja E, Kaski S (eds.) Kohonen Maps, Elsevier, Amsterdam: 303-315.
    • (1999) Kohonen Maps , pp. 303-315
    • Heskes, T.1
  • 34
    • 0002082238 scopus 로고    scopus 로고
    • WEBSOM-self-organizing maps of document collections
    • 4-6 June, Helsinki, Finland. Helsinkis University of Technology
    • Honkela T, Kaski S, Lagus K, Kohonen T (1997) WEBSOM-self-organizing maps of document collections. In: Proc. Workshop on Self-Organizing Maps (WSOM'97), 4-6 June, Helsinki, Finland. Helsinkis University of Technology: 310-315.
    • (1997) Proc. Workshop on Self-Organizing Maps (WSOM'97) , pp. 310-315
    • Honkela, T.1    Kaski, S.2    Lagus, K.3    Kohonen, T.4
  • 35
    • 33644899363 scopus 로고    scopus 로고
    • Generalising self-organising map for categorical data
    • Hsu C-C (2006) Generalising self-organising map for categorical data. IEEE Trans. Neural Networks, 17: 294-304.
    • (2006) IEEE Trans. Neural Networks , vol.17 , pp. 294-304
    • Hsu, C.-C.1
  • 37
    • 0041435860 scopus 로고    scopus 로고
    • Nonlinear independent component analysis: Existence and uniqueness results
    • Hyvärinen A, Pajunen P (1999) Nonlinear independent component analysis: Existence and uniqueness results. Neural Networks, 12: 429-439.
    • (1999) Neural Networks , vol.12 , pp. 429-439
    • Hyvärinen, A.1    Pajunen, P.2
  • 39
    • 0029061996 scopus 로고
    • Generalisation of principal component analysis, optimisation problems, and neural networks
    • Karhunen J, Joutsensalo J (1995) Generalisation of principal component analysis, optimisation problems, and neural networks. Neural Networks 8: 549-562.
    • (1995) Neural Networks , vol.8 , pp. 549-562
    • Karhunen, J.1    Joutsensalo, J.2
  • 40
    • 0002479386 scopus 로고    scopus 로고
    • Bibliography of self-organizing map (SOM) papers: 1981-1997
    • Kaski S, Kangas J, Kohonen T (1998) Bibliography of self-organizing map (SOM) papers: 1981-1997. Neural Computing Surveys, 1: 1-176.
    • (1998) Neural Computing Surveys , vol.1 , pp. 1-176
    • Kaski, S.1    Kangas, J.2    Kohonen, T.3
  • 41
    • 0001863796 scopus 로고    scopus 로고
    • Exploratory data analysis by the self-organizing map: Structures of welfare and poverty in the world
    • Refenes A-PN, Abu-Mostafa Y, Moody J, Weigend A eds, World Scientific, Singapore
    • Kaski S, Kohonen T (1996) Exploratory data analysis by the self-organizing map: Structures of welfare and poverty in the world. In: Refenes A-PN, Abu-Mostafa Y, Moody J, Weigend A (eds.) Neural Networks in Financial Engineering, World Scientific, Singapore: 498-507.
    • (1996) Neural Networks in Financial Engineering , pp. 498-507
    • Kaski, S.1    Kohonen, T.2
  • 43
    • 0015331348 scopus 로고
    • Correlation matrix memory
    • Kohonen T (1972) Correlation matrix memory. IEEE Trans. Computers, 21: 353-359.
    • (1972) IEEE Trans. Computers , vol.21 , pp. 353-359
    • Kohonen, T.1
  • 44
    • 0015543493 scopus 로고
    • A new model for randomly organised associative memory
    • Kohonen T (1973) A new model for randomly organised associative memory. Intl. J. Neuroscience, 5: 27-29.
    • (1973) Intl. J. Neuroscience , vol.5 , pp. 27-29
    • Kohonen, T.1
  • 45
    • 0016049559 scopus 로고
    • An adaptive associative memory principle
    • Kohonen T (1974) An adaptive associative memory principle. IEEE Trans. Computers, 23: 444-445.
    • (1974) IEEE Trans. Computers , vol.23 , pp. 444-445
    • Kohonen, T.1
  • 46
    • 0020068152 scopus 로고
    • Self-organised formation of topologically correct feature map
    • Kohonen T (1982) Self-organised formation of topologically correct feature map. Biological Cybernetics, 43: 56-69.
    • (1982) Biological Cybernetics , vol.43 , pp. 56-69
    • Kohonen, T.1
  • 48
    • 0023604404 scopus 로고
    • Representation of sensory information in self-organising feature maps, and relation of these maps to distributed memory networks
    • Kohonen T (1986) Representation of sensory information in self-organising feature maps, and relation of these maps to distributed memory networks. Proc. SPIE, 634: 248-259.
    • (1986) Proc. SPIE , vol.634 , pp. 248-259
    • Kohonen, T.1
  • 49
    • 0023521375 scopus 로고
    • Adaptive, associative, and self-organizing functions in neural computing
    • Kohonen T (1987) Adaptive, associative, and self-organizing functions in neural computing, Applied Optics, 26: 4910-4918.
    • (1987) Applied Optics , vol.26 , pp. 4910-4918
    • Kohonen, T.1
  • 50
    • 0003023542 scopus 로고
    • Self-organizing maps: Optimization approaches
    • Kohonen T, Makisara K, Simula O, Kangas J eds, North-Holland, Amsterdam, The Netherlands
    • Kohonen T (1991) Self-organizing maps: Optimization approaches. In: Kohonen T, Makisara K, Simula O, Kangas J (eds.) Artificial Neural Networks 2, North-Holland, Amsterdam, The Netherlands: 981-990.
    • (1991) Artificial Neural Networks 2 , pp. 981-990
    • Kohonen, T.1
  • 51
    • 44849141699 scopus 로고    scopus 로고
    • Kohonen T (1995) The adaptive-subspace SOM (ASSOM) and its use for the implementation of invariant feature detection. In: Fogelman-Soulié, Gallinari P (eds.) Proc. Intl. Conf. Artificial Neural Systems (ICANN'95), 9-13 October, Paris, France. EC2 Nanterre, France, 1: 3-10.
    • Kohonen T (1995) The adaptive-subspace SOM (ASSOM) and its use for the implementation of invariant feature detection. In: Fogelman-Soulié, Gallinari P (eds.) Proc. Intl. Conf. Artificial Neural Systems (ICANN'95), 9-13 October, Paris, France. EC2 Nanterre, France, 1: 3-10.
  • 52
    • 0001380009 scopus 로고    scopus 로고
    • Emergence of invariant-feature detectors in the adaptive-subspace self-organizing map
    • Kohonen T (1996) Emergence of invariant-feature detectors in the adaptive-subspace self-organizing map. Biological Cybernetics, 75: 281-291.
    • (1996) Biological Cybernetics , vol.75 , pp. 281-291
    • Kohonen, T.1
  • 54
    • 0033570792 scopus 로고    scopus 로고
    • Comparison of SOM point densities based on different criteria
    • Kohonen T (1999) Comparison of SOM point densities based on different criteria. Neural Computation, 11: 2081-2095.
    • (1999) Neural Computation , vol.11 , pp. 2081-2095
    • Kohonen, T.1
  • 55
    • 0036790769 scopus 로고    scopus 로고
    • How to make a large self-organising maps for nonvectorial data
    • Kohonen T, Somervuo P (2002) How to make a large self-organising maps for nonvectorial data. Neural Networks, 15: 945-952.
    • (2002) Neural Networks , vol.15 , pp. 945-952
    • Kohonen, T.1    Somervuo, P.2
  • 56
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Kramer MA (1991) Nonlinear principal component analysis using autoassociative neural networks. American Institute Chemical Engineers J., 37: 233-243.
    • (1991) American Institute Chemical Engineers J , vol.37 , pp. 233-243
    • Kramer, M.A.1
  • 58
    • 0001153915 scopus 로고
    • Clustering properties of hierarchical self-organizing maps
    • Lampinen J, Oja E (1992) Clustering properties of hierarchical self-organizing maps. J. Mathematical Imaging and Vision, 2: 261-272.
    • (1992) J. Mathematical Imaging and Vision , vol.2 , pp. 261-272
    • Lampinen, J.1    Oja, E.2
  • 59
    • 33748422937 scopus 로고    scopus 로고
    • Kernel self-organising maps for classification
    • Lau KW, Yin H, Hubbard S (2006) Kernel self-organising maps for classification. Neurocomputing, 69: 2033-2040.
    • (2006) Neurocomputing , vol.69 , pp. 2033-2040
    • Lau, K.W.1    Yin, H.2    Hubbard, S.3
  • 61
    • 0017471365 scopus 로고
    • A triangulation method for the sequential mapping of points from n-space to two-space
    • Lee RCT, Slagle JR, Blum H (1977) A triangulation method for the sequential mapping of points from n-space to two-space. IEEE Trans. Computers, 27: 288-292.
    • (1977) IEEE Trans. Computers , vol.27 , pp. 288-292
    • Lee, R.C.T.1    Slagle, J.R.2    Blum, H.3
  • 62
    • 0032523396 scopus 로고    scopus 로고
    • Weight-value convergence of the SOM algorithm for discrete input
    • Lin S, Si J (1998) Weight-value convergence of the SOM algorithm for discrete input. Neural Computation, 10: 807-814.
    • (1998) Neural Computation , vol.10 , pp. 807-814
    • Lin, S.1    Si, J.2
  • 64
    • 0026043412 scopus 로고
    • On the rate of convergence in topology preserving neural networks
    • Lo ZP, Bavarian B (1991) On the rate of convergence in topology preserving neural networks. Biological Cybernetics, 65: 55-63.
    • (1991) Biological Cybernetics , vol.65 , pp. 55-63
    • Lo, Z.P.1    Bavarian, B.2
  • 65
    • 0030556435 scopus 로고    scopus 로고
    • Feed-forward neural networks and topographic mappings for exploratory data analysis
    • Lowe D, Tipping ME (1996) Feed-forward neural networks and topographic mappings for exploratory data analysis. Neural Computing and Applications, 4: 83-95.
    • (1996) Neural Computing and Applications , vol.4 , pp. 83-95
    • Lowe, D.1    Tipping, M.E.2
  • 66
    • 0025448895 scopus 로고
    • Derivation of a class of training algorithms
    • Luttrell SP (1990) Derivation of a class of training algorithms. IEEE Trans. Neural Networks, 1: 229-232.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 229-232
    • Luttrell, S.P.1
  • 67
    • 85142982697 scopus 로고    scopus 로고
    • Luttrell SP (1991) Code vector density in topographic mappings: Scalar case, IEEE Trans. Neural Networks, 2: 427-436.
    • Luttrell SP (1991) Code vector density in topographic mappings: Scalar case, IEEE Trans. Neural Networks, 2: 427-436.
  • 68
    • 0000439329 scopus 로고
    • A Bayesian analysis of self-organising maps
    • Luttrell SP (1994) A Bayesian analysis of self-organising maps. Neural Computation, 6: 767-794.
    • (1994) Neural Computation , vol.6 , pp. 767-794
    • Luttrell, S.P.1
  • 70
    • 0031646493 scopus 로고    scopus 로고
    • Limitations of nonlinear PCA as performed with generic neural networks
    • Malthouse EC (1998) Limitations of nonlinear PCA as performed with generic neural networks. IEEE Trans. Neural Networks, 9: 165-173.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 165-173
    • Malthouse, E.C.1
  • 71
    • 0029270805 scopus 로고
    • Artificial Neural Networks for Feature Extraction and Multivariate Data Projection
    • Mao J, Jain AK (1995) Artificial Neural Networks for Feature Extraction and Multivariate Data Projection. IEEE Trans. Neural Networks, 6: 296-317.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 296-317
    • Mao, J.1    Jain, A.K.2
  • 72
    • 0014526073 scopus 로고
    • A theory of cerebellar cortex
    • Marr D (1969) A theory of cerebellar cortex. J. Physiology, 202: 437-70.
    • (1969) J. Physiology , vol.202 , pp. 437-470
    • Marr, D.1
  • 73
    • 0036789790 scopus 로고    scopus 로고
    • A self-organising network that grows when required
    • Marsland S, Shapiron J, Nehmzow U (2002) A self-organising network that grows when required. Neural Networks, 15: 1041-1058.
    • (2002) Neural Networks , vol.15 , pp. 1041-1058
    • Marsland, S.1    Shapiron, J.2    Nehmzow, U.3
  • 74
    • 0000742931 scopus 로고
    • A "neuralgas" network learns topologies
    • Kohonen T, Mäkisara K, Simula O, Kangas J eds, NorthHolland, Amsterdam, The Netherlands
    • Martinetz TM, Schulten KJ (1991) A "neuralgas" network learns topologies. In: Kohonen T, Mäkisara K, Simula O, Kangas J (eds.) Artificial Neural Networks, NorthHolland, Amsterdam, The Netherlands: 397-402.
    • (1991) Artificial Neural Networks , pp. 397-402
    • Martinetz, T.M.1    Schulten, K.J.2
  • 76
    • 0002320685 scopus 로고
    • Script recognition with hierarchical feature maps
    • Miikkulainen R (1990) Script recognition with hierarchical feature maps. Connection Science, 2: 83-101.
    • (1990) Connection Science , vol.2 , pp. 83-101
    • Miikkulainen, R.1
  • 77
    • 0031238559 scopus 로고    scopus 로고
    • Dyslexic and category-specific aphasic impairments in a self-organizing feature map model of the lexicon
    • Miikkulainen R (1997) Dyslexic and category-specific aphasic impairments in a self-organizing feature map model of the lexicon. Brain and Language, 59: 334-366.
    • (1997) Brain and Language , vol.59 , pp. 334-366
    • Miikkulainen, R.1
  • 78
    • 0002221292 scopus 로고
    • A type of duality between self-organising maps and minimal wiring
    • Mitchison G (1995) A type of duality between self-organising maps and minimal wiring. Neural Computation, 7: 25-35.
    • (1995) Neural Computation , vol.7 , pp. 25-35
    • Mitchison, G.1
  • 79
    • 26444462712 scopus 로고    scopus 로고
    • Möller-Levet CS, Yin H (2005) Modeling and analysis of gene expression time-series based on co-expression. Intl. J. Neural Systems, (Special Issue on Bioinformatics), 15: 311-322.
    • Möller-Levet CS, Yin H (2005) Modeling and analysis of gene expression time-series based on co-expression. Intl. J. Neural Systems, (Special Issue on Bioinformatics), 15: 311-322.
  • 80
    • 26444549767 scopus 로고    scopus 로고
    • Circular SOM for temporal characterisation of modelled gene expressions
    • Gallagher M, Hogan J, Maire F eds, Proc. Intl. Conf. Intelligent Engineering Data Engineering and Automated Learning Conf, IDEAL'05, 6-8 July, Brisbane, Australia, Springer-Verlag, Berlin
    • Möller-Levet CS, Yin H (2005) Circular SOM for temporal characterisation of modelled gene expressions. In: Gallagher M, Hogan J, Maire F (eds.) Proc. Intl. Conf. Intelligent Engineering Data Engineering and Automated Learning Conf. (IDEAL'05), 6-8 July, Brisbane, Australia. Lecture Notes in Computer Science 3578, Springer-Verlag, Berlin: 319-326.
    • (2005) Lecture Notes in Computer Science , vol.3578 , pp. 319-326
    • Möller-Levet, C.S.1    Yin, H.2
  • 81
    • 0002399288 scopus 로고
    • Neural networks, principal components, and subspaces
    • Oja E (1989) Neural networks, principal components, and subspaces. Intl. J. Neural Systems, 1: 61-68.
    • (1989) Intl. J. Neural Systems , vol.1 , pp. 61-68
    • Oja, E.1
  • 82
    • 0041855987 scopus 로고
    • PCA, ICA, and nonlinear Hebbian learning
    • eds, 9-13 October, Paris, France. EC2, Nanterre, France
    • Oja E (1995) PCA, ICA, and nonlinear Hebbian learning. In: Fogelman-Soulié F, Gallinari P (eds.) Proc. Intl. Conf. Artificial Neural Networks (ICANN'95), 9-13 October, Paris, France. EC2, Nanterre, France: 89-94.
    • (1995) Proc. Intl. Conf. Artificial Neural Networks (ICANN'95) , pp. 89-94
    • Oja, E.1
  • 83
    • 7444265318 scopus 로고    scopus 로고
    • Bibliography of self-organizing map (SOM) papers: 1998-2001 addendum
    • Oja M, Kaski S, Kohonen T (2003) Bibliography of self-organizing map (SOM) papers: 1998-2001 addendum. Neural Computing Surveys, 3: 1-156.
    • (2003) Neural Computing Surveys , vol.3 , pp. 1-156
    • Oja, M.1    Kaski, S.2    Kohonen, T.3
  • 84
    • 44849117828 scopus 로고    scopus 로고
    • Pajunen P, Hyvärinen A, Karhunen J (1996) Nonlinear blind source separation by self-organising maps. In: Amari S-I, Xu L, Chan L-W, King I, Leung K-S (eds.) Proc. Intl. Conf. Neural Information Processing (ICONIP'96), 24-27 September, Hong Kong. Springer-Verlag, Singapore: 1207-1210.
    • Pajunen P, Hyvärinen A, Karhunen J (1996) Nonlinear blind source separation by self-organising maps. In: Amari S-I, Xu L, Chan L-W, King I, Leung K-S (eds.) Proc. Intl. Conf. Neural Information Processing (ICONIP'96), 24-27 September, Hong Kong. Springer-Verlag, Singapore: 1207-1210.
  • 85
    • 2942672559 scopus 로고    scopus 로고
    • A kernel-base SOM classifier in input space
    • in Chinese
    • Pan ZS, Chen SC, Zhang DQ (2004) A kernel-base SOM classifier in input space. Acta Electronica Sinica, 32: 227-231 (in Chinese).
    • (2004) Acta Electronica Sinica , vol.32 , pp. 227-231
    • Pan, Z.S.1    Chen, S.C.2    Zhang, D.Q.3
  • 86
    • 0002272224 scopus 로고
    • Computer-generated cartoons
    • Barlow H, Blakemore C, Weston-Smith M eds, Cambridge University Press, Cambridge, UK
    • Pearson D, Hanna E, Martinez K (1990) Computer-generated cartoons. In: Barlow H, Blakemore C, Weston-Smith M (eds.) Images and Understandings, Cambridge University Press, Cambridge, UK.
    • (1990) Images and Understandings
    • Pearson, D.1    Hanna, E.2    Martinez, K.3
  • 88
    • 0036859375 scopus 로고    scopus 로고
    • The growing hierarchical selforganizing map: Exploratory analysis of high-dimensional data
    • Rauber A, Merkl D, Dittenbach M (2002) The growing hierarchical selforganizing map: Exploratory analysis of high-dimensional data. IEEE Trans. Neural Networks, 13: 1331-1341.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 1331-1341
    • Rauber, A.1    Merkl, D.2    Dittenbach, M.3
  • 89
    • 0025838954 scopus 로고
    • Asymptotical level density for class of vector quantisation processes
    • Ritter H (1991) Asymptotical level density for class of vector quantisation processes. IEEE Trans. Neural Networks, 2: 173-175.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 173-175
    • Ritter, H.1
  • 90
    • 34250092740 scopus 로고
    • Convergence properties of Kohonen's topology conserving maps: Fluctuations, stability, and dimension selection
    • Ritter H, Schulten K (1988) Convergence properties of Kohonen's topology conserving maps: Fluctuations, stability, and dimension selection. Biological Cybernetics, 60: 59-71.
    • (1988) Biological Cybernetics , vol.60 , pp. 59-71
    • Ritter, H.1    Schulten, K.2
  • 93
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science, 290: 2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 94
    • 0002520451 scopus 로고
    • Stochastic approximation: A recursive method for solving regression problems
    • Balakrishnan V ed, Academic Press, New York, NY
    • Sakrison DJ (1966) Stochastic approximation: A recursive method for solving regression problems. In: Balakrishnan V (ed.) Advances in Communication Systems: Theory and Applications 2, Academic Press, New York, NY: 51-100.
    • (1966) Advances in Communication Systems: Theory and Applications 2 , pp. 51-100
    • Sakrison, D.J.1
  • 95
    • 84887006810 scopus 로고
    • A nonlinear mapping for data structure analysis
    • Sammon JW (1969) A nonlinear mapping for data structure analysis. IEEE Trans. Computers, 18: 401-409.
    • (1969) IEEE Trans. Computers , vol.18 , pp. 401-409
    • Sammon, J.W.1
  • 96
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward network
    • Sanger TD (1991) Optimal unsupervised learning in a single-layer linear feedforward network. Neural Networks, 2: 459-473.
    • (1991) Neural Networks , vol.2 , pp. 459-473
    • Sanger, T.D.1
  • 97
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B, Smola A, Müller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10: 1299-131.
    • (1998) Neural Computation , vol.10 , pp. 1299-2131
    • Schölkopf, B.1    Smola, A.2    Müller, K.R.3
  • 98
    • 0242676165 scopus 로고    scopus 로고
    • Multi-dimensional self-organizing maps on massively parallel hardware
    • Allinson N, Yin H, Allinson L, Slack J eds, Springer-Verlag, London
    • Seiffert U, Michaelis B (2001) Multi-dimensional self-organizing maps on massively parallel hardware. In: Allinson N, Yin H, Allinson L, Slack J (eds.) Advances in Self-Organising Maps, Springer-Verlag, London: 160-166.
    • (2001) Advances in Self-Organising Maps , pp. 160-166
    • Seiffert, U.1    Michaelis, B.2
  • 99
    • 0004268904 scopus 로고
    • 2nd ed, Oxford University Press, Oxford, UK
    • Shepherd GM (1988) Neurobiology (2nd ed.), Oxford University Press, Oxford, UK.
    • (1988) Neurobiology
    • Shepherd, G.M.1
  • 101
    • 0026385066 scopus 로고
    • Reinforcement learning is direct adaptive optimal control
    • 26-28 June, Boston, MA. IEEE Press, Piscataway, NJ
    • Sutton RS, Barto AG, Williams RJ (1991) Reinforcement learning is direct adaptive optimal control. In: Proc. American Control Conf., 26-28 June, Boston, MA. IEEE Press, Piscataway, NJ: 2143-2146.
    • (1991) Proc. American Control Conf , pp. 2143-2146
    • Sutton, R.S.1    Barto, A.G.2    Williams, R.J.3
  • 102
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science, 290: 2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 105
    • 0002535204 scopus 로고
    • Self-organising neural networks for visualisation and classification
    • Opitz O, Lausen B, Klar R eds, Springer-Verlag, Berlin
    • Ultsch A (1993) Self-organising neural networks for visualisation and classification. In: Opitz O, Lausen B, Klar R (eds.) Information and Classification, Springer-Verlag, Berlin: 864-867.
    • (1993) Information and Classification , pp. 864-867
    • Ultsch, A.1
  • 106
    • 0001405580 scopus 로고    scopus 로고
    • Kernel-based equiprobabilitic topographic map formation
    • Van Hulle MM (1998) Kernel-based equiprobabilitic topographic map formation. Neural Computation, 10: 1847-1871.
    • (1998) Neural Computation , vol.10 , pp. 1847-1871
    • Van Hulle, M.M.1
  • 107
    • 0036791873 scopus 로고    scopus 로고
    • Kernel-based equiprobabilitic topographic map formation achieved with an information-theoretic approach
    • Van Hulle MM (2002) Kernel-based equiprobabilitic topographic map formation achieved with an information-theoretic approach. Neural Networks, 15: 1029-1040.
    • (2002) Neural Networks , vol.15 , pp. 1029-1040
    • Van Hulle, M.M.1
  • 108
    • 84907981684 scopus 로고    scopus 로고
    • A recurrent self-organizing map for temporal sequence processing
    • Lausanne, Switzerland. Springer-Verlag, Berlin
    • Varsta M, del Ruiz Millän J, Heikkonen J (1997) A recurrent self-organizing map for temporal sequence processing. Proc. ICANN'97 Lausanne, Switzerland. Springer-Verlag, Berlin: 197-202.
    • (1997) Proc. ICANN'97 , pp. 197-202
    • Varsta, M.1    del Ruiz Millän, J.2    Heikkonen, J.3
  • 109
    • 0031097231 scopus 로고    scopus 로고
    • Topology preservation in self-organizing feature maps: Exactdefinition and measurement
    • Villmann T, Der R, Herrmann M, Martinetz TM (1997) Topology preservation in self-organizing feature maps: Exactdefinition and measurement. IEEE Trans. Neural Networks, 8: 256-266.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 256-266
    • Villmann, T.1    Der, R.2    Herrmann, M.3    Martinetz, T.M.4
  • 110
    • 0036790884 scopus 로고    scopus 로고
    • Recursive self-organizing maps
    • Voegtlin T (2002) Recursive self-organizing maps. Neural Networks, 15: 979-992.
    • (2002) Neural Networks , vol.15 , pp. 979-992
    • Voegtlin, T.1
  • 111
    • 0015749493 scopus 로고
    • Self-organization of orientation sensitive cells in the striate cortex
    • von der Malsburg C, Willshaw DJ (1973) Self-organization of orientation sensitive cells in the striate cortex. Kybernetik, 4: 85-100.
    • (1973) Kybernetik , vol.4 , pp. 85-100
    • von der Malsburg, C.1    Willshaw, D.J.2
  • 112
    • 0030608109 scopus 로고    scopus 로고
    • Rapid learning with parametrized self-organizing maps
    • Walter J, Ritter H (1996) Rapid learning with parametrized self-organizing maps. Neurocomputing, 12: 131-153.
    • (1996) Neurocomputing , vol.12 , pp. 131-153
    • Walter, J.1    Ritter, H.2
  • 113
    • 33750714012 scopus 로고    scopus 로고
    • Wang Y, Yin H, Zhou L-Z, Liu Z-Q (2006) Real-time synthesis of 3D animations by learning parametric gaussians using self-organizing mixture networks. In: King I, Wang J, Chan L, Wang D (eds.) Proc. Intl. Conf. Neural Information Processing (ICONIP'06), 2-6 October, Hong Kong. Lecture Notes in Computer Science 4233, Springer-Verlag, Berlin, II: 671-678.
    • Wang Y, Yin H, Zhou L-Z, Liu Z-Q (2006) Real-time synthesis of 3D animations by learning parametric gaussians using self-organizing mixture networks. In: King I, Wang J, Chan L, Wang D (eds.) Proc. Intl. Conf. Neural Information Processing (ICONIP'06), 2-6 October, Hong Kong. Lecture Notes in Computer Science 4233, Springer-Verlag, Berlin, II: 671-678.
  • 116
    • 28244469523 scopus 로고    scopus 로고
    • PRSOM: A new visualization method by hybridizing multidimensional scaling and self-organizing map
    • Wu S, Chow TWS (2005) PRSOM: A new visualization method by hybridizing multidimensional scaling and self-organizing map. IEEE Trans. Neural Networks, 16: 1362-1380.
    • (2005) IEEE Trans. Neural Networks , vol.16 , pp. 1362-1380
    • Wu, S.1    Chow, T.W.S.2
  • 118
    • 0003029647 scopus 로고    scopus 로고
    • Visualisation induced SOM (ViSOM)
    • Allinson N, Yin H, Allinson L, Slack J eds, Springer-Verlag, London, UK
    • Yin H (2001) Visualisation induced SOM (ViSOM). In: Allinson N, Yin H, Allinson L, Slack J (eds.) Advances in Self-Organising Maps, Springer-Verlag, London, UK: 81-88.
    • (2001) Advances in Self-Organising Maps , pp. 81-88
    • Yin, H.1
  • 119
    • 0036128861 scopus 로고    scopus 로고
    • ViSOM-A novel method for multivariate data projection and structure visualisation
    • Yin H (2002) ViSOM-A novel method for multivariate data projection and structure visualisation. IEEE Trans. Neural Networks, 13: 237-243.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 237-243
    • Yin, H.1
  • 120
    • 0036789789 scopus 로고    scopus 로고
    • Data visualisation and manifold mapping using the ViSOM
    • Yin H (2002) Data visualisation and manifold mapping using the ViSOM. Neural Networks, 15: 1005-1016.
    • (2002) Neural Networks , vol.15 , pp. 1005-1016
    • Yin, H.1
  • 121
    • 35048819548 scopus 로고    scopus 로고
    • Nonlinear multidimensional data projection and visualisation
    • Liu J, Cheung Y, Yin H (eds, Proc. Intl. Conf. Intelligent Data Engineering and Automated Learning IDEAL'03, 21-23 March, Hong Kong, Springer-Verlag, Berlin
    • Yin H (2003) Nonlinear multidimensional data projection and visualisation. In: Liu J, Cheung Y, Yin H (eds.) Proc. Intl. Conf. Intelligent Data Engineering and Automated Learning (IDEAL'03), 21-23 March, Hong Kong. Lecture Notes in Computer Science 2690, Springer-Verlag, Berlin: 377-388.
    • (2003) Lecture Notes in Computer Science , vol.2690 , pp. 377-388
    • Yin, H.1
  • 122
    • 34547416335 scopus 로고    scopus 로고
    • Resolution enhancement for the ViSOM
    • 11-14 September, Kitakyushu, Japan. Kyushu Institute of Technology
    • Yin H (2003) Resolution enhancement for the ViSOM. In: Proc. Workshop on Self-Organizing Maps, 11-14 September, Kitakyushu, Japan. Kyushu Institute of Technology: 208-212.
    • (2003) Proc. Workshop on Self-Organizing Maps , pp. 208-212
    • Yin, H.1
  • 123
    • 33746596561 scopus 로고    scopus 로고
    • On the equivalence between kernel self-organising maps and self-organising mixture density networks
    • Yin H (2006). On the equivalence between kernel self-organising maps and self-organising mixture density networks. Neural Networks, 19: 780-784.
    • (2006) Neural Networks , vol.19 , pp. 780-784
    • Yin, H.1
  • 124
    • 51749115305 scopus 로고    scopus 로고
    • Connection between self-organising maps and metric multidimensional scaling
    • 12-17 August, Orlando, FL. IEEE Press, Piscataway, NJ: in press
    • Yin H (2007) Connection between self-organising maps and metric multidimensional scaling. In: Proc. Intl. Joint Conf. Neural Networks (IJCNN2007), 12-17 August, Orlando, FL. IEEE Press, Piscataway, NJ: (in press).
    • (2007) Proc. Intl. Joint Conf. Neural Networks (IJCNN2007)
    • Yin, H.1
  • 125
    • 0028524419 scopus 로고
    • Unsupervised segmentation of textured images using a hierarchical neural structure
    • Yin H, Allinson NM (1994) Unsupervised segmentation of textured images using a hierarchical neural structure. Electronics Letters, 30: 1842-1843.
    • (1994) Electronics Letters , vol.30 , pp. 1842-1843
    • Yin, H.1    Allinson, N.M.2
  • 126
    • 0029410706 scopus 로고
    • On the distribution and convergence of the feature space in self-organising maps
    • Yin H, Allinson NM (1995) On the distribution and convergence of the feature space in self-organising maps. Neural Computation, 7: 1178-1187.
    • (1995) Neural Computation , vol.7 , pp. 1178-1187
    • Yin, H.1    Allinson, N.M.2
  • 127
    • 0032691747 scopus 로고    scopus 로고
    • Interpolating self-organising map (iSOM)
    • Yin H, Allinson NM (1999) Interpolating self-organising map (iSOM). Electronics Letters, 35: 1649-1650.
    • (1999) Electronics Letters , vol.35 , pp. 1649-1650
    • Yin, H.1    Allinson, N.M.2
  • 128
    • 0035272084 scopus 로고    scopus 로고
    • Self-organising mixture networks for probability density estimation
    • Yin H, Allinson NM (2001) Self-organising mixture networks for probability density estimation. IEEE Trans. Neural Networks, 12: 405-411.
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 405-411
    • Yin, H.1    Allinson, N.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.