메뉴 건너뛰기




Volumn 17, Issue 2, 2014, Pages 223-248

Topology-oriented self-organizing maps: A survey

Author keywords

Hierarchical SOM; Self organizing maps; SOM Variants; Survey

Indexed keywords


EID: 84898545678     PISSN: 14337541     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10044-014-0367-9     Document Type: Article
Times cited : (42)

References (72)
  • 1
    • 0034186912 scopus 로고    scopus 로고
    • Dynamic self-organizing maps with controlled growth for knowledge discovery
    • Alahakoon D, Halgamuge SK, Srinivasan B (2000) Dynamic self-organizing maps with controlled growth for knowledge discovery. IEEE Trans Neural Netw 11(3): 601-614.
    • (2000) IEEE Trans Neural Netw , vol.11 , Issue.3 , pp. 601-614
    • Alahakoon, D.1    Halgamuge, S.K.2    Srinivasan, B.3
  • 4
    • 79959698695 scopus 로고    scopus 로고
    • Imposing tree-based topologies onto self organizing maps
    • Astudillo CA, Oommen BJ (2011) Imposing tree-based topologies onto self organizing maps. Inf Sci 181(18): 3798-3815.
    • (2011) Inf Sci , vol.181 , Issue.18 , pp. 3798-3815
    • Astudillo, C.A.1    Oommen, B.J.2
  • 5
    • 84866009007 scopus 로고    scopus 로고
    • On achieving semi-supervised pattern recognition by utilizing tree-based SOMs
    • Astudillo CA, Oommen BJ (2013) On achieving semi-supervised pattern recognition by utilizing tree-based SOMs. Pattern Recognit 46(1): 293-304.
    • (2013) Pattern Recognit , vol.46 , Issue.1 , pp. 293-304
    • Astudillo, C.A.1    Oommen, B.J.2
  • 6
    • 84885018228 scopus 로고    scopus 로고
    • Self-organizing maps whose topologies can be learned with adaptive binary search trees using conditional rotations
    • Astudillo CA, Oommen BJ (2014) Self-organizing maps whose topologies can be learned with adaptive binary search trees using conditional rotations. Pattern Recognit 47(1): 96-113.
    • (2014) Pattern Recognit , vol.47 , Issue.1 , pp. 96-113
    • Astudillo, C.A.1    Oommen, B.J.2
  • 8
    • 84876942320 scopus 로고    scopus 로고
    • Compositional generative mapping for tree-structured data-part I: bottom-up probabilistic modeling of trees
    • Bacciu D, Micheli A, Sperduti A (2012) Compositional generative mapping for tree-structured data-part I: bottom-up probabilistic modeling of trees. IEEE Trans Neural Netw Learn Syst 23(12): 1987-2002.
    • (2012) IEEE Trans Neural Netw Learn Syst , vol.23 , Issue.12 , pp. 1987-2002
    • Bacciu, D.1    Micheli, A.2    Sperduti, A.3
  • 9
    • 84877618651 scopus 로고    scopus 로고
    • Compositional generative mapping for tree-structured data-part II: topographic projection model
    • Bacciu D, Micheli A, Sperduti A (2013) Compositional generative mapping for tree-structured data-part II: topographic projection model. IEEE Trans Neural Netw Learn Syst 24(2): 231-247.
    • (2013) IEEE Trans Neural Netw Learn Syst , vol.24 , Issue.2 , pp. 231-247
    • Bacciu, D.1    Micheli, A.2    Sperduti, A.3
  • 10
    • 0032784636 scopus 로고    scopus 로고
    • Neural maps and topographic vector quantization
    • Bauer HU, Herrmann M, Villmann T (1999) Neural maps and topographic vector quantization. Neural Netw 12(4-5): 659-676.
    • (1999) Neural Netw , vol.12 , Issue.4-5 , pp. 659-676
    • Bauer, H.U.1    Herrmann, M.2    Villmann, T.3
  • 11
    • 0026898892 scopus 로고
    • Quantifying the neighborhood preservation of self-organizing feature maps
    • Bauer HU, Pawelzik KR (1992) Quantifying the neighborhood preservation of self-organizing feature maps. Neural Netw 3(4): 570-579.
    • (1992) Neural Netw , vol.3 , Issue.4 , pp. 570-579
    • Bauer, H.U.1    Pawelzik, K.R.2
  • 12
    • 33644887129 scopus 로고    scopus 로고
    • The parameterless self-organizing map algorithm
    • Berglund E, Sitte J (2006) The parameterless self-organizing map algorithm. Neural Netw IEEE Trans 17(2): 305-316.
    • (2006) Neural Netw IEEE Trans , vol.17 , Issue.2 , pp. 305-316
    • Berglund, E.1    Sitte, J.2
  • 16
    • 0008253954 scopus 로고
    • On the ordering conditions for self-organizing maps
    • Budinich M (1995) On the ordering conditions for self-organizing maps. Neural Comput 7(2): 284-289.
    • (1995) Neural Comput , vol.7 , Issue.2 , pp. 284-289
    • Budinich, M.1
  • 17
    • 0035012577 scopus 로고    scopus 로고
    • S-tree: self-organizing trees for data clustering and online vector quantization
    • Campos MM, Carpenter GA (2001) S-tree: self-organizing trees for data clustering and online vector quantization. Neural Netw 14(4-5): 505 - 525.
    • (2001) Neural Netw , vol.14 , Issue.4-5 , pp. 505-525
    • Campos, M.M.1    Carpenter, G.A.2
  • 18
    • 0023981451 scopus 로고
    • The art of adaptive pattern recognition by a self-organizing neural network
    • Carpenter GA, Grossberg S (1988) The art of adaptive pattern recognition by a self-organizing neural network. Computer 21(3): 77-88.
    • (1988) Computer , vol.21 , Issue.3 , pp. 77-88
    • Carpenter, G.A.1    Grossberg, S.2
  • 19
    • 0027641425 scopus 로고
    • Adaptive structuring of binary search trees using conditional rotations
    • Cheetham RP, Oommen BJ, Ng DTH (1993) Adaptive structuring of binary search trees using conditional rotations. IEEE Trans Knowl Data Eng 5(4): 695-704.
    • (1993) IEEE Trans Knowl Data Eng , vol.5 , Issue.4 , pp. 695-704
    • Cheetham, R.P.1    Oommen, B.J.2    Ng, D.T.H.3
  • 20
    • 70349246347 scopus 로고    scopus 로고
    • Multilayer SOM with tree-structured data for efficient document retrieval and plagiarism detection
    • Chow TWS, Rahman MKM (2009) Multilayer SOM with tree-structured data for efficient document retrieval and plagiarism detection. Neural Netw IEEE Trans 20(9): 1385-1402.
    • (2009) Neural Netw IEEE Trans , vol.20 , Issue.9 , pp. 1385-1402
    • Chow, T.W.S.1    Rahman, M.K.M.2
  • 21
    • 56449116794 scopus 로고
    • On the mathematical treatment of self organization: extension of some classical results
    • Conti PL, De Giovanni L (1991) On the mathematical treatment of self organization: extension of some classical results. Int Conf Artif Neural Netw ICANN 2: 1089-1812.
    • (1991) Int Conf Artif Neural Netw ICANN , vol.2 , pp. 1089-1812
    • Conti, P.L.1    de Giovanni, L.2
  • 22
    • 77957894348 scopus 로고    scopus 로고
    • On the topological modeling and analysis of industrial process data using the SOM
    • doi: 10. 1016/j. compchemeng. 2010. 07. 002
    • Corona F, Mulas M, Baratti R, Romagnoli JA (2010) On the topological modeling and analysis of industrial process data using the SOM. Comput Chem Eng 34(12): 2022-2032. doi: 10. 1016/j. compchemeng. 2010. 07. 002.
    • (2010) Comput Chem Eng , vol.34 , Issue.12 , pp. 2022-2032
    • Corona, F.1    Mulas, M.2    Baratti, R.3    Romagnoli, J.A.4
  • 23
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39(1): 1-38.
    • (1977) J R Stat Soc Ser B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 24
    • 0024123145 scopus 로고
    • Adding a conscience to competitive learning
    • DeSieno D (1988) Adding a conscience to competitive learning. IEEE Int Conf Neural Netw 1: 117-124.
    • (1988) IEEE Int Conf Neural Netw , vol.1 , pp. 117-124
    • DeSieno, D.1
  • 26
    • 37549008515 scopus 로고    scopus 로고
    • chapter clustering-class discovery in the post-genomic era. Springer, US
    • Dopazo J (2007) Fundamentals of data mining in genomics and proteomics, chapter clustering-class discovery in the post-genomic era. Springer, US, pp 123-148.
    • (2007) Fundamentals of data mining in genomics and proteomics , pp. 123-148
    • Dopazo, J.1
  • 27
    • 0031042985 scopus 로고    scopus 로고
    • Phylogenetic reconstruction using an unsupervised growing neural network that adopts the topology of a phylogenetic tree
    • Dopazo J, Carazo JM (1997) Phylogenetic reconstruction using an unsupervised growing neural network that adopts the topology of a phylogenetic tree. J Mol Evol 44(2): 226-233.
    • (1997) J Mol Evol , vol.44 , Issue.2 , pp. 226-233
    • Dopazo, J.1    Carazo, J.M.2
  • 29
    • 33751220822 scopus 로고    scopus 로고
    • Growing hierarchical tree SOM: an unsupervised neural network with dynamic topology
    • Forti A, Foresti GL (2006) Growing hierarchical tree SOM: an unsupervised neural network with dynamic topology. Neural Netw 19(10): 1568-1580.
    • (2006) Neural Netw , vol.19 , Issue.10 , pp. 1568-1580
    • Forti, A.1    Foresti, G.L.2
  • 31
    • 0028748949 scopus 로고
    • Growing cell structures-a self-organizing network for unsupervised and supervised learning
    • Fritzke B (1994) Growing cell structures-a self-organizing network for unsupervised and supervised learning. Neural Netw 7(9): 1441-1460.
    • (1994) Neural Netw , vol.7 , Issue.9 , pp. 1441-1460
    • Fritzke, B.1
  • 32
    • 33750126257 scopus 로고
    • Growing grid-a self-organizing network with constant neighborhood range and adaptation strength
    • Fritzke B (1995) Growing grid-a self-organizing network with constant neighborhood range and adaptation strength. Neural Process Lett 2(5): 9-13.
    • (1995) Neural Process Lett , vol.2 , Issue.5 , pp. 9-13
    • Fritzke, B.1
  • 33
    • 85135470835 scopus 로고
    • A growing neural gas network learns topologies
    • In: Tesauro G, Touretzky DS, Leen TK (eds), MIT Press, Cambridge
    • Fritzke B (1995) A growing neural gas network learns topologies. In: Tesauro G, Touretzky DS, Leen TK (eds) Advances in neural information processing systems, vol 7. MIT Press, Cambridge, pp 625-632.
    • (1995) Advances in neural information processing systems , vol.7 , pp. 625-632
    • Fritzke, B.1
  • 35
    • 67349138521 scopus 로고    scopus 로고
    • SOM of SOMs
    • Furukawa T (2009) SOM of SOMs. Neural Netw 22(4): 463-478.
    • (2009) Neural Netw , vol.22 , Issue.4 , pp. 463-478
    • Furukawa, T.1
  • 37
    • 33749676460 scopus 로고    scopus 로고
    • Self-organizing trees and forests: a powerful tool in pattern clustering and recognition
    • In: Campilho A, Kamel M (eds), Póvoa de Varzim, Portugal, September 18-20, 2006. Lecture notes in computer science
    • Guan L (2006) Self-organizing trees and forests: a powerful tool in pattern clustering and recognition. In: Campilho A, Kamel M (eds) Image analysis and recognition. Proceedings of the 3rd international conference, ICIAR 2006, Póvoa de Varzim, Portugal, September 18-20, 2006. Lecture notes in computer science, vol 4141. Springer, Berlin, pp 1-14.
    • (2006) Image analysis and recognition. Proceedings of the 3rd international conference, ICIAR 2006 , vol.4141 , pp. 1-14
    • Guan, L.1
  • 38
    • 61849163336 scopus 로고    scopus 로고
    • Graph self-organizing maps for cyclic and unbounded graphs
    • Advances in machine learning and computational intelligence 16th European symposium on artificial neural networks 2008
    • Hagenbuchner M, Sperduti A, Tsoi AC (2009) Graph self-organizing maps for cyclic and unbounded graphs. Neurocomputing 72(79): 1419-1430. Advances in machine learning and computational intelligence 16th European symposium on artificial neural networks 2008.
    • (2009) Neurocomputing , vol.72 , Issue.79 , pp. 1419-1430
    • Hagenbuchner, M.1    Sperduti, A.2    Tsoi, A.C.3
  • 39
    • 0037844902 scopus 로고    scopus 로고
    • A self-organizing map for adaptive processing of structured data
    • Hagenbuchner M, Sperduti A, Chung Tsoi A (2003) A self-organizing map for adaptive processing of structured data. IEEE Trans Neural Netw 14(3): 491-505.
    • (2003) IEEE Trans Neural Netw , vol.14 , Issue.3 , pp. 491-505
    • Hagenbuchner, M.1    Sperduti, A.2    Chung Tsoi, A.3
  • 41
    • 0002059002 scopus 로고    scopus 로고
    • Energy functions for self-organizing maps
    • In: Oja E, Kaski S (eds), Elsevier, Amsterdam
    • Heskes T (1999) Energy functions for self-organizing maps. In: Oja E, Kaski S (eds) Kohonen maps. Elsevier, Amsterdam, pp 303-315.
    • (1999) Kohonen maps , pp. 303-315
    • Heskes, T.1
  • 42
    • 0004582060 scopus 로고    scopus 로고
    • Ordering of self-organizing maps in multi-dimensional cases
    • Huang G, Babri HA, Li H (1998) Ordering of self-organizing maps in multi-dimensional cases. Neural Comput 10: 19-24.
    • (1998) Neural Comput , vol.10 , pp. 19-24
    • Huang, G.1    Babri, H.A.2    Li, H.3
  • 43
    • 79959287062 scopus 로고    scopus 로고
    • A novel bioinformatics strategy to predict directional changes of influenza a virus genome sequences
    • In: Laaksonen J, Honkela T (eds), Lecture Notes in Computer Science. Springer, Berlin
    • Iwasaki Y, Wada K, Itoh M, Ikemura T, Abe T (2011) A novel bioinformatics strategy to predict directional changes of influenza a virus genome sequences. In: Laaksonen J, Honkela T (eds) Advances in self-organizing maps, vol 6731. Lecture Notes in Computer Science. Springer, Berlin, pp 198-206.
    • (2011) Advances in self-organizing maps , vol.6731 , pp. 198-206
    • Iwasaki, Y.1    Wada, K.2    Itoh, M.3    Ikemura, T.4    Abe, T.5
  • 44
    • 7444265318 scopus 로고    scopus 로고
    • Bibliography of self-organizing map (SOM) papers: 1981-1997
    • Kaski S, Kangas J, Kohonen T (1998) Bibliography of self-organizing map (SOM) papers: 1981-1997. Neural Comput Surv 1: 102-350.
    • (1998) Neural Comput Surv , vol.1 , pp. 102-350
    • Kaski, S.1    Kangas, J.2    Kohonen, T.3
  • 45
    • 0029727599 scopus 로고    scopus 로고
    • Topology preservation in self-organizing maps
    • In: IEEE Neural Networks Council (ed), New Jersey, 1996
    • Kiviluoto K (1996) Topology preservation in self-organizing maps. In: IEEE Neural Networks Council (ed) Proceedings of international conference on neural networks (ICNN'96), vol 1, pp 294-299, New Jersey, 1996.
    • (1996) Proceedings of international conference on neural networks (ICNN'96) , vol.1 , pp. 294-299
    • Kiviluoto, K.1
  • 46
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43: 59-69.
    • (1982) Biol Cybern , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 51
    • 0028204732 scopus 로고
    • Topology representing networks
    • Martinetz T, Schulten K (1994) Topology representing networks. Neural Netw 7(3): 507-522.
    • (1994) Neural Netw , vol.7 , Issue.3 , pp. 507-522
    • Martinetz, T.1    Schulten, K.2
  • 54
    • 0002320685 scopus 로고
    • Script recognition with hierarchical feature maps
    • Miikkulainen R (1990) Script recognition with hierarchical feature maps. Connect Sci 2(1, 2): 83-101.
    • (1990) Connect Sci , vol.2 , Issue.1-2 , pp. 83-101
    • Miikkulainen, R.1
  • 55
    • 7444265318 scopus 로고    scopus 로고
    • Bibliography of self-organizing map (SOM) papers: 1998-2001 addendum
    • Oja M, Kaski S, Kohonen T (2003) Bibliography of self-organizing map (SOM) papers: 1998-2001 addendum. Neural Comput Surv 3: 1-156.
    • (2003) Neural Comput Surv , vol.3 , pp. 1-156
    • Oja, M.1    Kaski, S.2    Kohonen, T.3
  • 57
    • 10844255636 scopus 로고    scopus 로고
    • The evolving tree-a novel self-organizing network for data analysis
    • Pakkanen J, Iivarinen J, Oja E (2004) The evolving tree-a novel self-organizing network for data analysis. Neural Process Lett 20(3): 199-211.
    • (2004) Neural Process Lett , vol.20 , Issue.3 , pp. 199-211
    • Pakkanen, J.1    Iivarinen, J.2    Oja, E.3
  • 58
    • 30044436961 scopus 로고    scopus 로고
    • A new approach to hierarchical clustering and structuring of data with self-organizing maps
    • Pampalk E, Widmer G, Chan A (2004) A new approach to hierarchical clustering and structuring of data with self-organizing maps. Intell Data Anal 8(2): 131-149.
    • (2004) Intell Data Anal , vol.8 , Issue.2 , pp. 131-149
    • Pampalk, E.1    Widmer, G.2    Chan, A.3
  • 60
    • 38449116995 scopus 로고    scopus 로고
    • Survey and comparison of quality measures for self-organizing maps
    • In: Paralič J, Pölzlbauer G, Rauber A (eds), Sliezsky dom, Vysoké Tatry, Slovakia. Elfa Academic Press, Kosice
    • Pölzlbauer G (2004) Survey and comparison of quality measures for self-organizing maps. In: Paralič J, Pölzlbauer G, Rauber A (eds) Proceedings of the fifth workshop on data analysis (WDA'04), pp 67-82. Sliezsky dom, Vysoké Tatry, Slovakia. Elfa Academic Press, Kosice.
    • (2004) Proceedings of the fifth workshop on data analysis (WDA'04) , pp. 67-82
    • Pölzlbauer, G.1
  • 61
    • 0036859375 scopus 로고    scopus 로고
    • The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data
    • Rauber A, Merkl D, Dittenbach M (2002) The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Trans Neural Netw 13(6): 1331-1341.
    • (2002) IEEE Trans Neural Netw , vol.13 , Issue.6 , pp. 1331-1341
    • Rauber, A.1    Merkl, D.2    Dittenbach, M.3
  • 63
    • 79959298608 scopus 로고    scopus 로고
    • Fuzzy clustering of the self-organizing map: some applications on financial time series
    • In: Laaksonen J, Honkela T (eds)
    • Sarlin P, Eklund T (2011) Fuzzy clustering of the self-organizing map: some applications on financial time series. In: Laaksonen J, Honkela T (eds) Advances in self-organizing maps, vol 6731. Lecture Notes in Computer Science. Springer, Berlin, pp 40-50.
    • (2011) Advances in self-organizing maps, vol 6731. Lecture Notes in Computer Science , pp. 40-50
    • Sarlin, P.1    Eklund, T.2
  • 64
    • 15844418774 scopus 로고    scopus 로고
    • Merge SOM for temporal data
    • Trends in neurocomputing: 12th European symposium on artificial neura networks 2004
    • Strickert M, Hammer B (2005) Merge SOM for temporal data. Neurocomputing 64(0): 39-71. Trends in neurocomputing: 12th European symposium on artificial neural networks 2004.
    • (2005) Neurocomputing , vol.64 , pp. 39-71
    • Strickert, M.1    Hammer, B.2
  • 65
    • 67349242966 scopus 로고    scopus 로고
    • Exploiting data topology in visualization and clustering of self-organizing maps
    • Tasdemir K, Merenyi E (2009) Exploiting data topology in visualization and clustering of self-organizing maps. IEEE Trans Neural Netw 20(4): 549-562.
    • (2009) IEEE Trans Neural Netw , vol.20 , Issue.4 , pp. 549-562
    • Tasdemir, K.1    Merenyi, E.2
  • 67
    • 84958976659 scopus 로고    scopus 로고
    • Neighborhood preservation in nonlinear projection methods: an experimental study
    • In: Dorffner G, Bischof H, Hornik K (eds)
    • Venna J, Kaski S (2001) Neighborhood preservation in nonlinear projection methods: an experimental study. In: Dorffner G, Bischof H, Hornik K (eds) ICANN, vol 2130. Lecture Notes in Computer Science. Springer, Berlin, pp 485-491.
    • (2001) ICANN, vol 2130. Lecture Notes in Computer Science , pp. 485-491
    • Venna, J.1    Kaski, S.2
  • 68
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • Vesanto J (1999) SOM-based data visualization methods. Intell Data Anal 3(2): 111-126.
    • (1999) Intell Data Anal , vol.3 , Issue.2 , pp. 111-126
    • Vesanto, J.1
  • 70
    • 0031097231 scopus 로고    scopus 로고
    • Topology preservation in self-organizing feature maps: exact definition and measurement
    • Villmann T, Der R, Herrmann M, Martinetz TM (1997) Topology preservation in self-organizing feature maps: exact definition and measurement. IEEE Trans Neural Netw 8(2): 256-266.
    • (1997) IEEE Trans Neural Netw , vol.8 , Issue.2 , pp. 256-266
    • Villmann, T.1    Der, R.2    Herrmann, M.3    Martinetz, T.M.4
  • 71
  • 72
    • 36048959493 scopus 로고    scopus 로고
    • Self- and super-organizing maps in R: the Kohonen package
    • Wehrens R, Buydens LMC (2007) Self- and super-organizing maps in R: the Kohonen package. J Stat Softw 21(5): 1-19.
    • (2007) J Stat Softw , vol.21 , Issue.5 , pp. 1-19
    • Wehrens, R.1    Buydens, L.M.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.