메뉴 건너뛰기




Volumn 27, Issue 10, 2013, Pages 2026-2042

Hierarchical self-organizing maps for clustering spatiotemporal data

Author keywords

dependence; self organizing maps; spatiotemporal data mining

Indexed keywords

ALGORITHM; CLUSTER ANALYSIS; DATA SET; MAPPING; SATELLITE DATA; SPATIOTEMPORAL ANALYSIS;

EID: 84886875551     PISSN: 13658816     EISSN: 13623087     Source Type: Journal    
DOI: 10.1080/13658816.2013.788249     Document Type: Article
Times cited : (37)

References (47)
  • 2
    • 77955752962 scopus 로고    scopus 로고
    • Space-in-time and time-in-space self-organizing maps for exploring spatiotemporal patterns
    • Andrienko, G., et al., 2010b. Space-in-time and time-in-space self-organizing maps for exploring spatiotemporal patterns. Computer Graphics Forum, 29, 913-922.
    • (2010) Computer Graphics Forum , vol.29 , pp. 913-922
    • Andrienko, G.1
  • 3
    • 12344271105 scopus 로고    scopus 로고
    • The self-organizing map, the Geo-SOM, and relevant variants for geosciences
    • Bação, F., Lobo, V., and Painho, M., 2005. The self-organizing map, the Geo-SOM, and relevant variants for geosciences. Computational Geosciences, 31, 155-163.
    • (2005) Computational Geosciences , vol.31 , pp. 155-163
    • Bação, F.1    Lobo, V.2    Painho, M.3
  • 5
    • 0345404393 scopus 로고    scopus 로고
    • Theoretical aspects of the SOM algorithm
    • Cottrell, M., Fort, J., and Pages, G., 1998. Theoretical aspects of the SOM algorithm. Neurocomputing, 21 (13), 119-138.
    • (1998) Neurocomputing , vol.21 , Issue.13 , pp. 119-138
    • Cottrell, M.1    Fort, J.2    Pages, G.3
  • 6
    • 0036826330 scopus 로고    scopus 로고
    • Uncovering hierarchical structure in data using the growing hierarchical self-organizing map
    • Dittenbach, M., Rauber, A., and Merkl, D., 2002. Uncovering hierarchical structure in data using the growing hierarchical self-organizing map. Neurocomputing, 48 (1-4), 199-216.
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 199-216
    • Dittenbach, M.1    Rauber, A.2    Merkl, D.3
  • 7
    • 0013426686 scopus 로고    scopus 로고
    • On the use of self-organizing maps for clustering and visualization
    • Flexer, A., 2001. On the use of self-organizing maps for clustering and visualization. Intelligent Data Analysis, 5 (5), 373-384.
    • (2001) Intelligent Data Analysis , vol.5 , Issue.5 , pp. 373-384
    • Flexer, A.1
  • 9
    • 79959323170 scopus 로고    scopus 로고
    • A taxonomy of self-organizing maps for temporal sequence processing
    • Guimarães, G., Lobo, V.S., and Moura-Pires, F., 2003. A taxonomy of self-organizing maps for temporal sequence processing. Intelligent Data Analysis, 7, 269-290.
    • (2003) Intelligent Data Analysis , vol.7 , pp. 269-290
    • Guimarães, G.1    Lobo, V.S.2    Moura-Pires, F.3
  • 10
    • 33749527341 scopus 로고    scopus 로고
    • A visualization system for space-time and multivariate patterns (VIS-STAMP)
    • Guo, D., et al., 2006. A visualization system for space-time and multivariate patterns (VIS-STAMP). IEEE Transactions on Visualization and Computer Graphics, 12, 1461-1474.
    • (2006) IEEE Transactions on Visualization and Computer Graphics , vol.12 , pp. 1461-1474
    • Guo, D.1
  • 12
    • 84886934053 scopus 로고    scopus 로고
    • Visualization of crime trajectories with self-organizing maps: a case study on evaluating the impact of hurricanes on spatio-temporal crime hotspots
    • In, July, Paris, France,: International Cartographic Association
    • Hagenauer, J., Helbich, M., and Leitner, M., 2011. Visualization of crime trajectories with self-organizing maps: a case study on evaluating the impact of hurricanes on spatio-temporal crime hotspots. In: Proceedings of the 25th international cartographic conference, July. Paris, France: International Cartographic Association.
    • (2011) Proceedings of the 25th international cartographic conference
    • Hagenauer, J.1    Helbich, M.2    Leitner, M.3
  • 14
    • 77952424716 scopus 로고    scopus 로고
    • Space-time geostatistics for geography: a case study of radiation monitoring across parts of Germany
    • Heuvelink, G.B.M. and Griffith, D.A., 2010. Space-time geostatistics for geography: a case study of radiation monitoring across parts of Germany. Geographical Analysis, 42 (2), 161-179.
    • (2010) Geographical Analysis , vol.42 , Issue.2 , pp. 161-179
    • Heuvelink, G.B.M.1    Griffith, D.A.2
  • 15
    • 0037044030 scopus 로고    scopus 로고
    • Self-organizing maps: applications to synoptic climatology
    • Hewitson, B.C. and Crane, R.G., 2002. Self-organizing maps: applications to synoptic climatology. Climate Research, 22 (1), 13-26.
    • (2002) Climate Research , vol.22 , Issue.1 , pp. 13-26
    • Hewitson, B.C.1    Crane, R.G.2
  • 16
    • 34248547170 scopus 로고    scopus 로고
    • Market segmentation based on hierarchical self-organizing map for markets of multimedia on demand
    • Hung, C. and Tsai, C.F., 2008. Market segmentation based on hierarchical self-organizing map for markets of multimedia on demand. Expert Systems with Applications, 34 (1), 780-787.
    • (2008) Expert Systems with Applications , vol.34 , Issue.1 , pp. 780-787
    • Hung, C.1    Tsai, C.F.2
  • 18
    • 12344277517 scopus 로고
    • Temporal knowledge in locations of activations in a self-organizing map
    • In: Aleksander I., Taylor J., editors In, Amsterdam, Netherlands,: North-Holland
    • Kangas, J., 1992. Temporal knowledge in locations of activations in a self-organizing map. In: I. Aleksander and J. Taylor, eds. Artificial neural networks, 2. Vol. 1. Amsterdam, Netherlands: North-Holland, 117-120.
    • (1992) Artificial neural networks, 2. , vol.1 , pp. 117-120
    • Kangas, J.1
  • 19
    • 84886942302 scopus 로고    scopus 로고
    • Mining spatio-temporal datasets: relevance, challenges and current research directions
    • In: Ponce J., Karahoca A., editors, In, Rijeka, Hungary,: InTech
    • Kechadi, M.T., et al., 2009. Mining spatio-temporal datasets: relevance, challenges and current research directions. In: J. Ponce and A. Karahoca, eds. Data mining and knowledge discovery in real life applications. Rijeka, Hungary: InTech, 215-228.
    • (2009) Data mining and knowledge discovery in real life applications , pp. 215-228
    • Kechadi, M.T.1
  • 20
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen, T., 1982. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43, 59-69.
    • (1982) Biological Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 22
    • 84886916836 scopus 로고    scopus 로고
    • Raumstrukturelle Aspekte des FernstraBenbaus in der Ostregion, Osterreich
    • Kranabether, M., Helbich, M., and Knoflacher, H., 2012. Raumstrukturelle Aspekte des FernstraBenbaus in der Ostregion, Osterreich. Raumforschung und Raumordnung, 70, 19-29.
    • (2012) Raumforschung und Raumordnung , vol.70 , pp. 19-29
    • Kranabether, M.1    Helbich, M.2    Knoflacher, H.3
  • 23
    • 0032752472 scopus 로고    scopus 로고
    • Geostatistical space-time models: a review
    • Kyriakidis, P.C. and Journel, A.G., 1999. Geostatistical space-time models: a review. Mathematical Geology, 31, 651-684.
    • (1999) Mathematical Geology , vol.31 , pp. 651-684
    • Kyriakidis, P.C.1    Journel, A.G.2
  • 24
  • 25
    • 33645324060 scopus 로고    scopus 로고
    • Last of the censuses? The future of small area population data
    • Martin, D., 2006. Last of the censuses? The future of small area population data. Transactions of the Institute of British Geographers, 31 (1), 1475-5661.
    • (2006) Transactions of the Institute of British Geographers , vol.31 , Issue.1 , pp. 1475-5661
    • Martin, D.1
  • 28
    • 76349098693 scopus 로고    scopus 로고
    • The data avalanche is here. Shouldn't we be digging?
    • Miller, H.J., 2010. The data avalanche is here. Shouldn't we be digging? Journal of Regional Science, 50, 181-201.
    • (2010) Journal of Regional Science , vol.50 , pp. 181-201
    • Miller, H.J.1
  • 30
    • 0008309751 scopus 로고
    • Neuroclassification of spatial data
    • In: Hewitson B., Crane R., editors In, Dordrecht, Netherlands,: Kluwer Academic Publishers
    • Openshaw, S., 1992. Neuroclassification of spatial data. In: B. Hewitson and R. Crane, eds. Neural nets: applications in geography. Dordrecht, Netherlands: Kluwer Academic Publishers, 53-70.
    • (1992) Neural nets: Applications in geography , pp. 53-70
    • Openshaw, S.1
  • 31
    • 2942682542 scopus 로고    scopus 로고
    • Geographical data mining: key design issues
    • In, Fredericksburg, VA,: GeoComputation CD-ROM
    • Openshaw, S.O., 1999. Geographical data mining: key design issues. In: 4th International conference on geocomputation. Fredericksburg, VA: GeoComputation CD-ROM.
    • (1999) 4th International conference on geocomputation
    • Openshaw, S.O.1
  • 32
    • 0000560762 scopus 로고
    • Classifying and regionalizing census data
    • In: Openshaw S., editors In, Cambridge, MA,: Geoinformation International
    • Openshaw, S. and Wymer, C., 1995. Classifying and regionalizing census data. In: S. Openshaw, ed. Census users' handbook. Cambridge, MA: Geoinformation International, 239-269.
    • (1995) Census users' handbook , pp. 239-269
    • Openshaw, S.1    Wymer, C.2
  • 34
    • 38449116995 scopus 로고    scopus 로고
    • Survey and comparison of quality measures for self-organizing maps
    • In: Paralic J., Polzlbauer G., Rauber A., editors In, Kosice, Slovakia,: Elfa Academic Press
    • Pölzlbauer, G., 2004. Survey and comparison of quality measures for self-organizing maps. In: J. Paralic, G. Polzlbauer and A. Rauber, eds. Proceedings of the fifth workshop on data analysis (WDA '04). Kosice, Slovakia: Elfa Academic Press, 67-82.
    • (2004) Proceedings of the fifth workshop on data analysis (WDA '04) , pp. 67-82
    • Pölzlbauer, G.1
  • 35
    • 84889478250 scopus 로고    scopus 로고
    • Introduction: what is a self-organizing map?
    • In: P. Agarwal and A. Skupin (eds.), Chichester, UK,: John Wiley & Sons
    • Skupin, A. and Agarwal, P., 2008. Introduction: what is a self-organizing map? In: P. Agarwal and A. Skupin (eds.), Self-organising maps: applications in geographical information science. Chichester, UK: John Wiley & Sons, 11-30.
    • (2008) Self-organising maps: Applications in geographical information science , pp. 11-30
    • Skupin, A.1    Agarwal, P.2
  • 36
    • 0043204296 scopus 로고    scopus 로고
    • Spatialization methods: a cartographic research agenda for non-geographic information visualization
    • Skupin, A. and Fabrikant, S.I., 2003. Spatialization methods: a cartographic research agenda for non-geographic information visualization. Cartography and Geographic Information Science, 30, 95-119.
    • (2003) Cartography and Geographic Information Science , vol.30 , pp. 95-119
    • Skupin, A.1    Fabrikant, S.I.2
  • 37
    • 17844389858 scopus 로고    scopus 로고
    • Visualizing demographic trajectories with self-organizing maps
    • Skupin, A. and Hagelman, R., 2005. Visualizing demographic trajectories with self-organizing maps. Geoinformatica, 9, 159-179.
    • (2005) Geoinformatica , vol.9 , pp. 159-179
    • Skupin, A.1    Hagelman, R.2
  • 38
    • 0037408569 scopus 로고    scopus 로고
    • Web page clustering using a self-organizing map of user navigation patterns
    • Smith, K.A. and Ng, A., 2003. Web page clustering using a self-organizing map of user navigation patterns. Decision Support Systems, 35 (2), 245-256.
    • (2003) Decision Support Systems , vol.35 , Issue.2 , pp. 245-256
    • Smith, K.A.1    Ng, A.2
  • 39
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - a knowledge reuse framework for combining multiple partitions
    • Strehl, A. and Ghosh, J., 2003. Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3, 583-617.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 40
    • 0036883693 scopus 로고    scopus 로고
    • GeoVISTA studio: a codeless visual programming environment for geoscientific data analysis and visualization
    • Takatsuka, M. and Gahegan, M., 2002. GeoVISTA studio: a codeless visual programming environment for geoscientific data analysis and visualization. Computer & Geo-sciences, 28 (10), 1131-1144.
    • (2002) Computer & Geo-sciences , vol.28 , Issue.10 , pp. 1131-1144
    • Takatsuka, M.1    Gahegan, M.2
  • 41
    • 0000565591 scopus 로고
    • A computer movie simulating urban growth in the Detroit region
    • Tobler, W.R., 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234-240.
    • (1970) Economic Geography , vol.46 , pp. 234-240
    • Tobler, W.R.1
  • 42
    • 0002432308 scopus 로고
    • Kohonen's self organizing feature maps for exploratory data analysis
    • In, Paris, France,: Kluwer Academic Press
    • Ultsch, A. and Siemon, H.P., 1990. Kohonen's self organizing feature maps for exploratory data analysis. In: Proceedings of international neural networks conference. Paris, France: Kluwer Academic Press, 305-308.
    • (1990) Proceedings of international neural networks conference , pp. 305-308
    • Ultsch, A.1    Siemon, H.P.2
  • 43
    • 0006585767 scopus 로고
    • Research Report No 90194, Department of Computer Science University of Marburg. Available online at
    • Ultsch, A. and Vetter, C., 1994. Self-organizing-feature-maps versus statistical clustering methods: a benchmark. Research Report No 90194, Department of Computer Science University of Marburg. Available online at: http://www.informatik.uni-marburg.de/~databionics/papers/ultsch94benchmark.pdf.
    • (1994) Self-organizing-feature-maps versus statistical clustering methods: A benchmark
    • Ultsch, A.1    Vetter, C.2
  • 44
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • Vesanto, J., 1999. SOM-based data visualization methods. Intelligent Data Analysis, 3, 111-126.
    • (1999) Intelligent Data Analysis , vol.3 , pp. 111-126
    • Vesanto, J.1
  • 47
    • 60649120714 scopus 로고    scopus 로고
    • Estimating the risk of insect species invasion: Kohonen self-organising maps versus k-means clustering
    • Watts, M.J. and Worner, S., 2009. Estimating the risk of insect species invasion: Kohonen self-organising maps versus k-means clustering. Ecological Modelling, 220 (6), 821-829.
    • (2009) Ecological Modelling , vol.220 , Issue.6 , pp. 821-829
    • Watts, M.J.1    Worner, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.