-
1
-
-
77957894411
-
Space, time, and visual analytics
-
Andrienko, G., et al., 2010a. Space, time, and visual analytics. International Journal Geographical Information Science, 24 (10), 1577-1600.
-
(2010)
International Journal Geographical Information Science
, vol.24
, Issue.10
, pp. 1577-1600
-
-
Andrienko, G.1
-
2
-
-
77955752962
-
Space-in-time and time-in-space self-organizing maps for exploring spatiotemporal patterns
-
Andrienko, G., et al., 2010b. Space-in-time and time-in-space self-organizing maps for exploring spatiotemporal patterns. Computer Graphics Forum, 29, 913-922.
-
(2010)
Computer Graphics Forum
, vol.29
, pp. 913-922
-
-
Andrienko, G.1
-
3
-
-
12344271105
-
The self-organizing map, the Geo-SOM, and relevant variants for geosciences
-
Bação, F., Lobo, V., and Painho, M., 2005. The self-organizing map, the Geo-SOM, and relevant variants for geosciences. Computational Geosciences, 31, 155-163.
-
(2005)
Computational Geosciences
, vol.31
, pp. 155-163
-
-
Bação, F.1
Lobo, V.2
Painho, M.3
-
5
-
-
0345404393
-
Theoretical aspects of the SOM algorithm
-
Cottrell, M., Fort, J., and Pages, G., 1998. Theoretical aspects of the SOM algorithm. Neurocomputing, 21 (13), 119-138.
-
(1998)
Neurocomputing
, vol.21
, Issue.13
, pp. 119-138
-
-
Cottrell, M.1
Fort, J.2
Pages, G.3
-
6
-
-
0036826330
-
Uncovering hierarchical structure in data using the growing hierarchical self-organizing map
-
Dittenbach, M., Rauber, A., and Merkl, D., 2002. Uncovering hierarchical structure in data using the growing hierarchical self-organizing map. Neurocomputing, 48 (1-4), 199-216.
-
(2002)
Neurocomputing
, vol.48
, Issue.1-4
, pp. 199-216
-
-
Dittenbach, M.1
Rauber, A.2
Merkl, D.3
-
7
-
-
0013426686
-
On the use of self-organizing maps for clustering and visualization
-
Flexer, A., 2001. On the use of self-organizing maps for clustering and visualization. Intelligent Data Analysis, 5 (5), 373-384.
-
(2001)
Intelligent Data Analysis
, vol.5
, Issue.5
, pp. 373-384
-
-
Flexer, A.1
-
9
-
-
79959323170
-
A taxonomy of self-organizing maps for temporal sequence processing
-
Guimarães, G., Lobo, V.S., and Moura-Pires, F., 2003. A taxonomy of self-organizing maps for temporal sequence processing. Intelligent Data Analysis, 7, 269-290.
-
(2003)
Intelligent Data Analysis
, vol.7
, pp. 269-290
-
-
Guimarães, G.1
Lobo, V.S.2
Moura-Pires, F.3
-
10
-
-
33749527341
-
A visualization system for space-time and multivariate patterns (VIS-STAMP)
-
Guo, D., et al., 2006. A visualization system for space-time and multivariate patterns (VIS-STAMP). IEEE Transactions on Visualization and Computer Graphics, 12, 1461-1474.
-
(2006)
IEEE Transactions on Visualization and Computer Graphics
, vol.12
, pp. 1461-1474
-
-
Guo, D.1
-
11
-
-
84874445061
-
Contextual neural gas for spatial clustering and analysis
-
Hagenauer, J. and Helbich, M.H., 2013. Contextual neural gas for spatial clustering and analysis. International Journal of Geographical Information Science, 27 (2), 251-266.
-
(2013)
International Journal of Geographical Information Science
, vol.27
, Issue.2
, pp. 251-266
-
-
Hagenauer, J.1
Helbich, M.H.2
-
12
-
-
84886934053
-
Visualization of crime trajectories with self-organizing maps: a case study on evaluating the impact of hurricanes on spatio-temporal crime hotspots
-
In, July, Paris, France,: International Cartographic Association
-
Hagenauer, J., Helbich, M., and Leitner, M., 2011. Visualization of crime trajectories with self-organizing maps: a case study on evaluating the impact of hurricanes on spatio-temporal crime hotspots. In: Proceedings of the 25th international cartographic conference, July. Paris, France: International Cartographic Association.
-
(2011)
Proceedings of the 25th international cartographic conference
-
-
Hagenauer, J.1
Helbich, M.2
Leitner, M.3
-
13
-
-
0003987805
-
-
Cambridge, MA,: MIT Press
-
Hand, D.J., Smyth, P., and Mannila, H., 2001. Principles of data mining. Cambridge, MA: MIT Press.
-
(2001)
Principles of data mining
-
-
Hand, D.J.1
Smyth, P.2
Mannila, H.3
-
14
-
-
77952424716
-
Space-time geostatistics for geography: a case study of radiation monitoring across parts of Germany
-
Heuvelink, G.B.M. and Griffith, D.A., 2010. Space-time geostatistics for geography: a case study of radiation monitoring across parts of Germany. Geographical Analysis, 42 (2), 161-179.
-
(2010)
Geographical Analysis
, vol.42
, Issue.2
, pp. 161-179
-
-
Heuvelink, G.B.M.1
Griffith, D.A.2
-
15
-
-
0037044030
-
Self-organizing maps: applications to synoptic climatology
-
Hewitson, B.C. and Crane, R.G., 2002. Self-organizing maps: applications to synoptic climatology. Climate Research, 22 (1), 13-26.
-
(2002)
Climate Research
, vol.22
, Issue.1
, pp. 13-26
-
-
Hewitson, B.C.1
Crane, R.G.2
-
16
-
-
34248547170
-
Market segmentation based on hierarchical self-organizing map for markets of multimedia on demand
-
Hung, C. and Tsai, C.F., 2008. Market segmentation based on hierarchical self-organizing map for markets of multimedia on demand. Expert Systems with Applications, 34 (1), 780-787.
-
(2008)
Expert Systems with Applications
, vol.34
, Issue.1
, pp. 780-787
-
-
Hung, C.1
Tsai, C.F.2
-
17
-
-
84893405732
-
Data clustering: a review
-
Jain, A.K., Murty, M.N., and Flynn, P.J., 1999. Data clustering: a review. ACM Computing Surveys, 31 (3), 264-323.
-
(1999)
ACM Computing Surveys
, vol.31
, Issue.3
, pp. 264-323
-
-
Jain, A.K.1
Murty, M.N.2
Flynn, P.J.3
-
18
-
-
12344277517
-
Temporal knowledge in locations of activations in a self-organizing map
-
In: Aleksander I., Taylor J., editors In, Amsterdam, Netherlands,: North-Holland
-
Kangas, J., 1992. Temporal knowledge in locations of activations in a self-organizing map. In: I. Aleksander and J. Taylor, eds. Artificial neural networks, 2. Vol. 1. Amsterdam, Netherlands: North-Holland, 117-120.
-
(1992)
Artificial neural networks, 2.
, vol.1
, pp. 117-120
-
-
Kangas, J.1
-
19
-
-
84886942302
-
Mining spatio-temporal datasets: relevance, challenges and current research directions
-
In: Ponce J., Karahoca A., editors, In, Rijeka, Hungary,: InTech
-
Kechadi, M.T., et al., 2009. Mining spatio-temporal datasets: relevance, challenges and current research directions. In: J. Ponce and A. Karahoca, eds. Data mining and knowledge discovery in real life applications. Rijeka, Hungary: InTech, 215-228.
-
(2009)
Data mining and knowledge discovery in real life applications
, pp. 215-228
-
-
Kechadi, M.T.1
-
20
-
-
0020068152
-
Self-organized formation of topologically correct feature maps
-
Kohonen, T., 1982. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43, 59-69.
-
(1982)
Biological Cybernetics
, vol.43
, pp. 59-69
-
-
Kohonen, T.1
-
22
-
-
84886916836
-
Raumstrukturelle Aspekte des FernstraBenbaus in der Ostregion, Osterreich
-
Kranabether, M., Helbich, M., and Knoflacher, H., 2012. Raumstrukturelle Aspekte des FernstraBenbaus in der Ostregion, Osterreich. Raumforschung und Raumordnung, 70, 19-29.
-
(2012)
Raumforschung und Raumordnung
, vol.70
, pp. 19-29
-
-
Kranabether, M.1
Helbich, M.2
Knoflacher, H.3
-
23
-
-
0032752472
-
Geostatistical space-time models: a review
-
Kyriakidis, P.C. and Journel, A.G., 1999. Geostatistical space-time models: a review. Mathematical Geology, 31, 651-684.
-
(1999)
Mathematical Geology
, vol.31
, pp. 651-684
-
-
Kyriakidis, P.C.1
Journel, A.G.2
-
25
-
-
33645324060
-
Last of the censuses? The future of small area population data
-
Martin, D., 2006. Last of the censuses? The future of small area population data. Transactions of the Institute of British Geographers, 31 (1), 1475-5661.
-
(2006)
Transactions of the Institute of British Geographers
, vol.31
, Issue.1
, pp. 1475-5661
-
-
Martin, D.1
-
26
-
-
42449126612
-
Recent advances to model anisotropic space-time data
-
Mateu, J., Porcu, E., and Gregori, P., 2008. Recent advances to model anisotropic space-time data. Statistical Methods and Applications, 17, 209-223.
-
(2008)
Statistical Methods and Applications
, vol.17
, pp. 209-223
-
-
Mateu, J.1
Porcu, E.2
Gregori, P.3
-
27
-
-
38149018632
-
Visualising class distribution on self-organising maps
-
Germany: Springer, ICANN'07, Porto, Portugal Berlin/Heidelberg
-
Mayer, R., Aziz, T.A., and Rauber, A., 2007. Visualising class distribution on self-organising maps. In: Proceedings of the 17th international conference on artificial neural networks, ICANN'07, Porto, Portugal Berlin/Heidelberg, Germany: Springer, 359-368.
-
(2007)
Proceedings of the 17th international conference on artificial neural networks
, pp. 359-368
-
-
Mayer, R.1
Aziz, T.A.2
Rauber, A.3
-
28
-
-
76349098693
-
The data avalanche is here. Shouldn't we be digging?
-
Miller, H.J., 2010. The data avalanche is here. Shouldn't we be digging? Journal of Regional Science, 50, 181-201.
-
(2010)
Journal of Regional Science
, vol.50
, pp. 181-201
-
-
Miller, H.J.1
-
30
-
-
0008309751
-
Neuroclassification of spatial data
-
In: Hewitson B., Crane R., editors In, Dordrecht, Netherlands,: Kluwer Academic Publishers
-
Openshaw, S., 1992. Neuroclassification of spatial data. In: B. Hewitson and R. Crane, eds. Neural nets: applications in geography. Dordrecht, Netherlands: Kluwer Academic Publishers, 53-70.
-
(1992)
Neural nets: Applications in geography
, pp. 53-70
-
-
Openshaw, S.1
-
31
-
-
2942682542
-
Geographical data mining: key design issues
-
In, Fredericksburg, VA,: GeoComputation CD-ROM
-
Openshaw, S.O., 1999. Geographical data mining: key design issues. In: 4th International conference on geocomputation. Fredericksburg, VA: GeoComputation CD-ROM.
-
(1999)
4th International conference on geocomputation
-
-
Openshaw, S.O.1
-
32
-
-
0000560762
-
Classifying and regionalizing census data
-
In: Openshaw S., editors In, Cambridge, MA,: Geoinformation International
-
Openshaw, S. and Wymer, C., 1995. Classifying and regionalizing census data. In: S. Openshaw, ed. Census users' handbook. Cambridge, MA: Geoinformation International, 239-269.
-
(1995)
Census users' handbook
, pp. 239-269
-
-
Openshaw, S.1
Wymer, C.2
-
34
-
-
38449116995
-
Survey and comparison of quality measures for self-organizing maps
-
In: Paralic J., Polzlbauer G., Rauber A., editors In, Kosice, Slovakia,: Elfa Academic Press
-
Pölzlbauer, G., 2004. Survey and comparison of quality measures for self-organizing maps. In: J. Paralic, G. Polzlbauer and A. Rauber, eds. Proceedings of the fifth workshop on data analysis (WDA '04). Kosice, Slovakia: Elfa Academic Press, 67-82.
-
(2004)
Proceedings of the fifth workshop on data analysis (WDA '04)
, pp. 67-82
-
-
Pölzlbauer, G.1
-
35
-
-
84889478250
-
Introduction: what is a self-organizing map?
-
In: P. Agarwal and A. Skupin (eds.), Chichester, UK,: John Wiley & Sons
-
Skupin, A. and Agarwal, P., 2008. Introduction: what is a self-organizing map? In: P. Agarwal and A. Skupin (eds.), Self-organising maps: applications in geographical information science. Chichester, UK: John Wiley & Sons, 11-30.
-
(2008)
Self-organising maps: Applications in geographical information science
, pp. 11-30
-
-
Skupin, A.1
Agarwal, P.2
-
36
-
-
0043204296
-
Spatialization methods: a cartographic research agenda for non-geographic information visualization
-
Skupin, A. and Fabrikant, S.I., 2003. Spatialization methods: a cartographic research agenda for non-geographic information visualization. Cartography and Geographic Information Science, 30, 95-119.
-
(2003)
Cartography and Geographic Information Science
, vol.30
, pp. 95-119
-
-
Skupin, A.1
Fabrikant, S.I.2
-
37
-
-
17844389858
-
Visualizing demographic trajectories with self-organizing maps
-
Skupin, A. and Hagelman, R., 2005. Visualizing demographic trajectories with self-organizing maps. Geoinformatica, 9, 159-179.
-
(2005)
Geoinformatica
, vol.9
, pp. 159-179
-
-
Skupin, A.1
Hagelman, R.2
-
38
-
-
0037408569
-
Web page clustering using a self-organizing map of user navigation patterns
-
Smith, K.A. and Ng, A., 2003. Web page clustering using a self-organizing map of user navigation patterns. Decision Support Systems, 35 (2), 245-256.
-
(2003)
Decision Support Systems
, vol.35
, Issue.2
, pp. 245-256
-
-
Smith, K.A.1
Ng, A.2
-
39
-
-
0041965980
-
Cluster ensembles - a knowledge reuse framework for combining multiple partitions
-
Strehl, A. and Ghosh, J., 2003. Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3, 583-617.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 583-617
-
-
Strehl, A.1
Ghosh, J.2
-
40
-
-
0036883693
-
GeoVISTA studio: a codeless visual programming environment for geoscientific data analysis and visualization
-
Takatsuka, M. and Gahegan, M., 2002. GeoVISTA studio: a codeless visual programming environment for geoscientific data analysis and visualization. Computer & Geo-sciences, 28 (10), 1131-1144.
-
(2002)
Computer & Geo-sciences
, vol.28
, Issue.10
, pp. 1131-1144
-
-
Takatsuka, M.1
Gahegan, M.2
-
41
-
-
0000565591
-
A computer movie simulating urban growth in the Detroit region
-
Tobler, W.R., 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234-240.
-
(1970)
Economic Geography
, vol.46
, pp. 234-240
-
-
Tobler, W.R.1
-
42
-
-
0002432308
-
Kohonen's self organizing feature maps for exploratory data analysis
-
In, Paris, France,: Kluwer Academic Press
-
Ultsch, A. and Siemon, H.P., 1990. Kohonen's self organizing feature maps for exploratory data analysis. In: Proceedings of international neural networks conference. Paris, France: Kluwer Academic Press, 305-308.
-
(1990)
Proceedings of international neural networks conference
, pp. 305-308
-
-
Ultsch, A.1
Siemon, H.P.2
-
43
-
-
0006585767
-
-
Research Report No 90194, Department of Computer Science University of Marburg. Available online at
-
Ultsch, A. and Vetter, C., 1994. Self-organizing-feature-maps versus statistical clustering methods: a benchmark. Research Report No 90194, Department of Computer Science University of Marburg. Available online at: http://www.informatik.uni-marburg.de/~databionics/papers/ultsch94benchmark.pdf.
-
(1994)
Self-organizing-feature-maps versus statistical clustering methods: A benchmark
-
-
Ultsch, A.1
Vetter, C.2
-
44
-
-
38049168357
-
SOM-based data visualization methods
-
Vesanto, J., 1999. SOM-based data visualization methods. Intelligent Data Analysis, 3, 111-126.
-
(1999)
Intelligent Data Analysis
, vol.3
, pp. 111-126
-
-
Vesanto, J.1
-
45
-
-
0034187784
-
Clustering of the self-organizing map
-
Vesanto, J. and Alhoniemi, E., 2000. Clustering of the self-organizing map. IEEE Transactions on Neural Networks, 11 (3), 586-600.
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, Issue.3
, pp. 586-600
-
-
Vesanto, J.1
Alhoniemi, E.2
-
47
-
-
60649120714
-
Estimating the risk of insect species invasion: Kohonen self-organising maps versus k-means clustering
-
Watts, M.J. and Worner, S., 2009. Estimating the risk of insect species invasion: Kohonen self-organising maps versus k-means clustering. Ecological Modelling, 220 (6), 821-829.
-
(2009)
Ecological Modelling
, vol.220
, Issue.6
, pp. 821-829
-
-
Watts, M.J.1
Worner, S.2
|