-
1
-
-
0345404393
-
Theoretical aspects of the SOM algorithm
-
10.1016/S0925-2312(98)00034-4 0917.68082
-
Cottrell M, Fort JC, Pagés G (1998) Theoretical aspects of the SOM algorithm. Neurocomputing 21:119-138
-
(1998)
Neurocomputing
, vol.21
, pp. 119-138
-
-
Cottrell, M.1
Fort, J.C.2
Pagés, G.3
-
4
-
-
44849094485
-
The self-organizing maps: Background, theories, extensions and applications
-
Yin Hujun (2008) The self-organizing maps: background, theories, extensions and applications. Computational intelligence: a compendium 2008:715-762
-
(2008)
Computational Intelligence: A Compendium
, vol.2008
, pp. 715-762
-
-
Yin, H.1
-
5
-
-
0031128354
-
Topology-preserving map formation achieved with a purely local unsupervised competitive learning rule
-
10.1016/S0893-6080(96)00107-4
-
Van Hulle M (1997) Topology-preserving map formation achieved with a purely local unsupervised competitive learning rule. Neural Netw 10(3):431-446
-
(1997)
Neural Netw
, vol.10
, Issue.3
, pp. 431-446
-
-
Van Hulle, M.1
-
6
-
-
33646166324
-
Sufficient conditions for self-organization in the SOM with a decreasing neighborhood function of any width
-
Conference Pub 470
-
Flanagan J (1999) Sufficient conditions for self-organization in the SOM with a decreasing neighborhood function of any width. In: Conference of artificial neural networks. Conference Pub 470
-
(1999)
Conference of Artificial Neural Networks
-
-
Flanagan, J.1
-
7
-
-
0026436795
-
Self-organizing maps: Ordering convergence properties and energy functions
-
10.1007/BF00201801 0747.92006
-
Erwin E, Obermayer K, Schulten K (1992) Self-organizing maps: ordering. convergence properties and energy functions. Biol Cyb 67:47-55
-
(1992)
Biol Cyb
, vol.67
, pp. 47-55
-
-
Erwin, E.1
Obermayer, K.2
Schulten, K.3
-
8
-
-
33644887129
-
The parameterless self-organizing map algorithm
-
10.1109/TNN.2006.871720
-
Berglund E, Sitte J (2006) The parameterless self-organizing map algorithm. IEEE Trans Neural Netw 17(2):305-316
-
(2006)
IEEE Trans Neural Netw
, vol.17
, Issue.2
, pp. 305-316
-
-
Berglund, E.1
Sitte, J.2
-
9
-
-
0026462366
-
Self-organizing maps: Stationary states, metastability and convergence rate
-
10.1007/BF00201800 0747.92005
-
Erwin E, Obermayer K, Schulten K (1992b) self-organizing maps: stationary states, metastability and convergence rate. Biol Cyb 67:35-45
-
(1992)
Biol Cyb
, vol.67
, pp. 35-45
-
-
Erwin, E.1
Obermayer, K.2
Schulten, K.3
-
10
-
-
77950299548
-
Synaptic rewiring for topographic map formation and receptive field development
-
10.1016/j.neunet.2010.01.005
-
Bamford SA, Af Murray (2010) Synaptic rewiring for topographic map formation and receptive field development. Neural Netw 23:517-527
-
(2010)
Neural Netw
, vol.23
, pp. 517-527
-
-
Bamford, S.A.1
Af, M.2
-
11
-
-
79955606242
-
Visual object tracking by an evolutionary self-organizing neural network
-
2830492
-
Maia JEB, Barreto GA, Coelho ALV (2011) Visual object tracking by an evolutionary self-organizing neural network. J Intell Fuzzy Syst 22(2-3):69-81
-
(2011)
J Intell Fuzzy Syst
, vol.22
, Issue.2-3
, pp. 69-81
-
-
Maia, J.E.B.1
Barreto, G.A.2
Coelho, A.L.V.3
-
12
-
-
0017166860
-
How patterned neural connections can be set up by self-organization
-
Willshaw D, Malsburg C (1976) How patterned neural connections can be set up by self-organization. Proc R Soc Lond 194:431-445
-
(1976)
Proc R Soc Lond
, vol.194
, pp. 431-445
-
-
Willshaw, D.1
Malsburg, C.2
-
13
-
-
78049303516
-
Neural syntax: Cell assemblies, synapsembles, and readers
-
Buzsaki G (2010) Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68(3):362-85.
-
(2010)
Neuron
, vol.68
, Issue.3
, pp. 362-362
-
-
Buzsaki, G.1
-
15
-
-
58549105906
-
Computational model provides insight into the distinct responses of neurons to chemical and topographical cues
-
Forciniti L, Schmidt CE, Zaman H (2009) Computational model provides insight into the distinct responses of neurons to chemical and topographical cues. Ann Biomed Eng 37(2):363-374
-
(2009)
Ann Biomed Eng
, vol.37
, Issue.2
, pp. 363-374
-
-
Forciniti, L.1
Schmidt, C.E.2
Zaman, H.3
-
16
-
-
0006748983
-
Effects of refractory periods in the dynamics of a diluted neural network
-
10.1103/PhysRevE.53.5146
-
Tamarit F, Stariolo D, Cannas A, Serras P (1996) Effects of refractory periods in the dynamics of a diluted neural network. Phys Rev E 53:51465152
-
(1996)
Phys Rev e
, vol.53
, pp. 51465152
-
-
Tamarit, F.1
Stariolo, D.2
Cannas, A.3
Serras, P.4
-
17
-
-
82455192318
-
An electoral preferences model based on self-organizing maps
-
10.1016/j.jocs.2011.08.003
-
Neme A, Hernández S, Neme O (2011) An electoral preferences model based on self-organizing maps. J Comput Sci 2(4):345-352
-
(2011)
J Comput Sci
, vol.2
, Issue.4
, pp. 345-352
-
-
Neme, A.1
Hernández, S.2
Neme, O.3
-
18
-
-
69049104265
-
Self-organizing maps with non-cooperative strategies
-
Springer, New York
-
Neme A, Hernández S, Neme O, Hernández (2009) Self-organizing maps with non-cooperative strategies. In: Advances in self-organizing maps. Springer, New York, pp 200-208
-
(2009)
Advances in Self-organizing Maps
, pp. 200-208
-
-
Neme A, H.1
-
19
-
-
84893689797
-
Top-down control of learning in biological self-organizing maps
-
Trappenberg T, Hartono P, Rasmusson D (2009) Top-down control of learning in biological self-organizing maps. WSOM 2009:316-324
-
(2009)
WSOM
, vol.2009
, pp. 316-324
-
-
Trappenberg, T.1
Hartono, P.2
Rasmusson, D.3
-
20
-
-
34548629190
-
Self-organizing maps with asymmetric neighborhood function
-
10.1162/neco.2007.19.9.2515 1143.68517 2334690
-
Aoki T, Aoyagi T (2007) Self-organizing maps with asymmetric neighborhood function. Neural Comput 19(9):2515-2535
-
(2007)
Neural Comput
, vol.19
, Issue.9
, pp. 2515-2535
-
-
Aoki, T.1
Aoyagi, T.2
-
21
-
-
58849108604
-
A parameter in the SOM learning rule that incorporates activation frequency
-
Neme A, Miramontes P (2006) A parameter in the SOM learning rule that incorporates activation frequency. ICANN 1:455-463
-
(2006)
ICANN
, vol.1
, pp. 455-463
-
-
Neme, A.1
Miramontes, P.2
-
22
-
-
0036791992
-
Self-organizing maps with recursive neighborhood adaption
-
10.1016/S0893-6080(02)00073-4
-
Lee J, Verleysen M (2002) Self-organizing maps with recursive neighborhood adaption. Neural Netw 15:993-1003
-
(2002)
Neural Netw
, vol.15
, pp. 993-1003
-
-
Lee, J.1
Verleysen, M.2
-
23
-
-
0026898892
-
Quantifying the neighborhood preservation in self-organizing feature maps
-
10.1109/72.143371
-
Bauer H, Pawelzik K (1992) Quantifying the neighborhood preservation in self-organizing feature maps. IEEE Trans Neural Netw 3(4):570-579
-
(1992)
IEEE Trans Neural Netw
, vol.3
, Issue.4
, pp. 570-579
-
-
Bauer, H.1
Pawelzik, K.2
-
24
-
-
0032784636
-
Neural maps and topographic vector quantization
-
10.1016/S0893-6080(99)00027-1
-
Bauer H, Herrmann M, Villmann T (1999) Neural maps and topographic vector quantization. Neural Netw 12(4-5):659-676
-
(1999)
Neural Netw
, vol.12
, Issue.4-5
, pp. 659-676
-
-
Bauer, H.1
Herrmann, M.2
Villmann, T.3
-
26
-
-
84958976659
-
Neighborhood preservation in nonlinear projection methods: An experimental study
-
Dorffner G, Bischof H, Hornik K (eds) Springer, New York
-
Venna J, Kaski S (2001) Neighborhood preservation in nonlinear projection methods: an experimental study. In: Dorffner G, Bischof H, Hornik K (eds) ICANN 2001, vol 2130. Springer, New York, pp 485-491
-
(2001)
ICANN 2001
, vol.2130
, pp. 485-491
-
-
Venna, J.1
Kaski, S.2
-
27
-
-
69049083538
-
Analytic comparison of self-organising maps
-
LNCS
-
Mayer R, Neumayer R, Baum D, Rauber A (2009) Analytic comparison of self-organising maps. In: WSOM 2009. LNCS, vol 5629, pp 182-190
-
(2009)
WSOM 2009
, vol.5629
, pp. 182-190
-
-
Mayer, R.1
Neumayer, R.2
Baum, D.3
Rauber, A.4
-
29
-
-
27944469202
-
Statistical validation of mutual information calculations: Comparison of alternative numerical algorithms
-
10.1103/PhysRevE.71.066208
-
Cellucci CJ, Albano AM, Rapp PE (2005) Statistical validation of mutual information calculations: comparison of alternative numerical algorithms. Phys Rev E 71:066208
-
(2005)
Phys Rev e
, vol.71
, pp. 066208
-
-
Cellucci, C.J.1
Albano, A.M.2
Rapp, P.E.3
-
30
-
-
84893706819
-
The self-organized chaos game representation for genomic signatures analysis
-
Neme A, Nido A, Mireles V, Miramontes P (2008) The self-organized chaos game representation for genomic signatures analysis. Learn Nonlinear Models 6(2):111-120
-
(2008)
Learn Nonlinear Models
, vol.6
, Issue.2
, pp. 111-120
-
-
Neme, A.1
Nido, A.2
Mireles, V.3
Miramontes, P.4
-
31
-
-
0035016060
-
Analysis of genomic sequences by chaos game representatio
-
10.1093/bioinformatics/17.5.429
-
Almeida J, Carrico J, Maretzek A, Noble P, Fletcher M (2001) Analysis of genomic sequences by chaos game representatio. Bioinformatics 17(5):429-437
-
(2001)
Bioinformatics
, vol.17
, Issue.5
, pp. 429-437
-
-
Almeida, J.1
Carrico, J.2
Maretzek, A.3
Noble, P.4
Fletcher, M.5
-
33
-
-
84893653582
-
DNA circular game of chaos
-
Uribe F, Garcia-Colín L (eds) American Institute of Physics
-
Carreón G, Hernández E, Miramontes P (2005) DNA circular game of chaos. In: Uribe F, Garcia-Colín L (eds) Statistical physics and beyond, American Institute of Physics
-
(2005)
Statistical Physics and beyond
-
-
Carreón G, H.1
-
34
-
-
67349115700
-
Ordering process of self-organizing maps improved by asymmetric neighborhood function
-
10.1007/s11571-008-9060-2 10.1007/s11571-008-9060-2
-
Aoki T, Ota K, Kurata K (2009) Ordering process of self-organizing maps improved by asymmetric neighborhood function. Cogn Neurodyn 3:9-15. doi: 10.1007/s11571-008-9060-2
-
(2009)
Cogn Neurodyn
, vol.3
, pp. 9-15
-
-
Aoki, T.1
Ota, K.2
Kurata, K.3
-
35
-
-
34447108890
-
Reducing topological defects in self-organizing maps using multiple scale neighborhood functions
-
10.1016/j.biosystems.2006.07.004
-
Murakochi K, Sato Y (2007) Reducing topological defects in self-organizing maps using multiple scale neighborhood functions. Biosystems 90-1:101-104
-
(2007)
Biosystems
, vol.90
, Issue.1
, pp. 101-104
-
-
Murakochi, K.1
Sato, Y.2
|