메뉴 건너뛰기




Volumn 1-4, Issue , 2012, Pages 585-622

Self-organizing maps

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; CONFORMAL MAPPING; DATA HANDLING; MAPS; TREES (MATHEMATICS);

EID: 84896944956     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-3-540-92910-9_19     Document Type: Chapter
Times cited : (92)

References (117)
  • 1
    • 0028996621 scopus 로고
    • Unified approach to snakes, elastic nets, and Kohonen maps
    • Speech and Signal Processing (ICASSP'95). IEEE Computer Society, Los Alamitos, CA, vol 5
    • Abrantes AJ, Marques JS (1995) Unified approach to snakes, elastic nets, and Kohonen maps. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'95). IEEE Computer Society, Los Alamitos, CA, vol 5, pp 3427-3430
    • (1995) Proceedings of the IEEE International Conference on Acoustics , pp. 3427-3430
    • Abrantes, A.J.1    Marques, J.S.2
  • 4
    • 0036292373 scopus 로고    scopus 로고
    • Applications of neural network analyses to in vivo 1H magnetic resonance spectroscopy of Parkinson disease patients
    • Axelson D, Bakken IJ, Gribbestad IS, Ehrnholm B, Nilsen G, Aasly J (2002) Applications of neural network analyses to in vivo 1H magnetic resonance spectroscopy of Parkinson disease patients. J Magn Reson Imaging 16(1):13-20
    • (2002) J Magn Reson Imaging , vol.16 , Issue.1 , pp. 13-20
    • Axelson, D.1    Bakken, I.J.2    Gribbestad, I.S.3    Ehrnholm, B.4    Nilsen, G.5    Aasly, J.6
  • 5
    • 0037079576 scopus 로고    scopus 로고
    • The elastic net algorithm and protein structure prediction
    • Ball KD, Erman B, Dill KA (2002) The elastic net algorithm and protein structure prediction. J Comput Chem 23(1):77-83
    • (2002) J Comput Chem , vol.23 , Issue.1 , pp. 77-83
    • Ball, K.D.1    Erman, B.2    Dill, K.A.3
  • 6
    • 0000163157 scopus 로고    scopus 로고
    • Time in self-organizing maps: an overview of models
    • Barreto G, Araú jo A (2001) Time in self-organizing maps: an overview of models. Int J Comput Res 10(2):139-179
    • (2001) Int J Comput Res , vol.10 , Issue.2 , pp. 139-179
    • Barreto, G.1    Araújo, A.2
  • 7
    • 0031101545 scopus 로고    scopus 로고
    • Growing a hypercubical output space in a self-organizing feature map
    • Bauer H-U, Villmann T (1997) Growing a hypercubical output space in a self-organizing feature map. IEEE Trans Neural Netw 8(2):218-226
    • (1997) IEEE Trans Neural Netw , vol.8 , Issue.2 , pp. 218-226
    • Bauer, H.-U.1    Villmann, T.2
  • 8
    • 0001449448 scopus 로고    scopus 로고
    • Controlling the magnification factor of self-organizing feature maps
    • Bauer H-U, Der R, Herrmann M (1996) Controlling the magnification factor of self-organizing feature maps. Neural Comput 8:757-771
    • (1996) Neural Comput , vol.8 , pp. 757-771
    • Bauer, H.-U.1    Der, R.2    Herrmann, M.3
  • 9
    • 0002168637 scopus 로고
    • Competitive and selforganizing algorithms based on the minimization of an information criterion
    • Finland. Elsevier Science Publishers, North-Holland
    • Benaim M, Tomasini L (1991) Competitive and selforganizing algorithms based on the minimization of an information criterion. In: Proceedings of 1991 international conference in artificial neural networks (ICANN'91). Espoo, Finland. Elsevier Science Publishers, North-Holland, pp 391-396
    • (1991) Proceedings of 1991 international conference in artificial neural networks (ICANN'91). Espoo , pp. 391-396
    • Benaim, M.1    Tomasini, L.2
  • 12
    • 0030681437 scopus 로고    scopus 로고
    • In:Proceedings IEE fifth international conference on artificial neural networks
    • Bishop CM, Hinton GE, and Strachan IGD (1997) In:Proceedings IEE fifth international conference on artificial neural networks. Cambridge UK, 7-9 July 1997, pp 111-116
    • (1997) , pp. 111-116
    • Bishop, C.M.1    Hinton, G.E.2    Strachan, I.G.D.3
  • 14
    • 84943228749 scopus 로고
    • Incremental grid growing: encoding high-dimensional structure into a two-dimensional feature map
    • CA. IEEE Press, Piscataway, NJ, vol 1
    • Blackmore J, Miikkulainen R (1993) Incremental grid growing: encoding high-dimensional structure into a two-dimensional feature map. In: Proceedings of IEEE international conference on neural networks. San Francisco, CA. IEEE Press, Piscataway, NJ, vol 1, pp 450-455
    • (1993) Proceedings of IEEE international conference on neural networks. San Francisco , pp. 450-455
    • Blackmore, J.1    Miikkulainen, R.2
  • 15
    • 0001311791 scopus 로고
    • Dynamic cell structure learns perfectly topology preserving map
    • Bruske J, Sommer G (1995) Dynamic cell structure learns perfectly topology preserving map. Neural Comput 7(4):845-865
    • (1995) Neural Comput , vol.7 , Issue.4 , pp. 845-865
    • Bruske, J.1    Sommer, G.2
  • 16
    • 0032304491 scopus 로고    scopus 로고
    • Dimensionality reduction of electropalatographic data using latent variable models
    • Carreira-Perpiñán MÁ, Renals S (1998) Dimensionality reduction of electropalatographic data using latent variable models. Speech Commun 26(4):259-282
    • (1998) Speech Commun , vol.26 , Issue.4 , pp. 259-282
    • Carreira-Perpiñán, M.A.1    Renals, S.2
  • 17
    • 85028385036 scopus 로고    scopus 로고
    • Bibliography on the Self-Organizing Map (SOM) and LearningVectorQuantization (LVQ), Helsinki University of Technology
    • Centre NNR (2003) Bibliography on the Self-Organizing Map (SOM) and LearningVectorQuantization (LVQ), Helsinki University of Technology. http://liinwww.ira.uka.de/bibliography/Neural/SOM. LVQ.html
    • (2003)
    • Centre, N.N.R.1
  • 18
    • 0027187261 scopus 로고
    • The temporal Kohonen map
    • Chappell G, Taylor J (1993) The temporal Kohonen map. Neural Netw 6:441-445
    • (1993) Neural Netw , vol.6 , pp. 441-445
    • Chappell, G.1    Taylor, J.2
  • 19
    • 0029196051 scopus 로고
    • Optimal adaptive k-means algorithm with dynamic adjustment of learning rate
    • Chinrungrueng C, Séquin CH (1995) Optimal adaptive k-means algorithm with dynamic adjustment of learning rate. IEEE Trans Neural Netw 6:157-169
    • (1995) IEEE Trans Neural Netw , vol.6 , pp. 157-169
    • Chinrungrueng, C.1    Séquin, C.H.2
  • 23
    • 0002629270 scopus 로고
    • Maximum likelihood for incomplete data via the EM algorithm
    • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood for incomplete data via the EM algorithm. J R Stat Soc B 39:1-38
    • (1977) J R Stat Soc B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 26
    • 0023657610 scopus 로고
    • An analogue approach to the travelling salesman problem using an elastic net method
    • Durbin R, Willshaw D (1987) An analogue approach to the travelling salesman problem using an elastic net method. Nature 326:689-691
    • (1987) Nature , vol.326 , pp. 689-691
    • Durbin, R.1    Willshaw, D.2
  • 27
    • 0000155356 scopus 로고
    • An analysis of the elastic net approach to the traveling salesman problem
    • Durbin R, Szeliski R, Yuille AL (1989) An analysis of the elastic net approach to the traveling salesman problem. Neural Comput 1:348-358
    • (1989) Neural Comput , vol.1 , pp. 348-358
    • Durbin, R.1    Szeliski, R.2    Yuille, A.L.3
  • 28
    • 0026436795 scopus 로고
    • Selforganizing maps: ordering, convergence properties and energy functions
    • Erwin E, Obermayer K, Schulten K (1992) Selforganizing maps: ordering, convergence properties and energy functions. Biol Cybern 67:47-55
    • (1992) Biol Cybern , vol.67 , pp. 47-55
    • Erwin, E.1    Obermayer, K.2    Schulten, K.3
  • 29
    • 0742301622 scopus 로고    scopus 로고
    • A spatiotemporal memory based on SOMs with activity diffusion
    • Euliano NR, Principe JC (1999). A spatiotemporal memory based on SOMs with activity diffusion. In:Oja E, Kaski S (eds) Kohonen maps. Elsevier, Amsterdam, The Netherlands, pp 253-266
    • (1999) , pp. 253-266
    • Euliano, N.R.1    Principe, J.C.2
  • 30
    • 0028748949 scopus 로고
    • Growing cell structures-a self-organizing network for unsupervised and supervised learning
    • Fritzke B (1994) Growing cell structures-a self-organizing network for unsupervised and supervised learning. Neural Netw 7(9):1441-1460
    • (1994) Neural Netw , vol.7 , Issue.9 , pp. 1441-1460
    • Fritzke, B.1
  • 31
    • 85135470835 scopus 로고
    • A growing neural gas network learns topologies
    • Tesauro G, Touretzky DS, Leen TK (eds), MIT Press, Cambridge, MA
    • Fritzke B (1995a) A growing neural gas network learns topologies. In: Tesauro G, Touretzky DS, Leen TK (eds) Advances in neural information proceedings systems 7 (NIPS 1994). MIT Press, Cambridge, MA, pp 625-632
    • (1995) Advances in neural information proceedings systems 7 (NIPS 1994) , pp. 625-632
    • Fritzke, B.1
  • 32
    • 33750126257 scopus 로고
    • Growing grid-a self-organizing network with constant neighborhood range and adaptation strength
    • Fritzke B (1995b) Growing grid-a self-organizing network with constant neighborhood range and adaptation strength. Neural Process Lett 2(5):9-13
    • (1995) Neural Process Lett , vol.2 , Issue.5 , pp. 9-13
    • Fritzke, B.1
  • 34
    • 33644926091 scopus 로고    scopus 로고
    • Batch map extensions of the kernel-based maximum entropy learning rule
    • Gautama T, Van Hulle MM (2006) Batch map extensions of the kernel-based maximum entropy learning rule. IEEE Trans Neural Netw 16(2):529-532
    • (2006) IEEE Trans Neural Netw , vol.16 , Issue.2 , pp. 529-532
    • Gautama, T.1    Van Hulle, M.M.2
  • 39
    • 0000787409 scopus 로고    scopus 로고
    • Phase transitions in stochastic self-organizing maps
    • Graepel T, Burger M, Obermayer K (1997) Phase transitions in stochastic self-organizing maps. Phys Rev E 56(4):3876-3890
    • (1997) Phys Rev E , vol.56 , Issue.4 , pp. 3876-3890
    • Graepel, T.1    Burger, M.2    Obermayer, K.3
  • 40
    • 0344972928 scopus 로고    scopus 로고
    • Self-organizing maps: generalizations and new optimization techniques
    • Graepel T, Burger M, Obermayer K (1998) Self-organizing maps: generalizations and new optimization techniques. Neurocomputing 21:173-190
    • (1998) Neurocomputing , vol.21 , pp. 173-190
    • Graepel, T.1    Burger, M.2    Obermayer, K.3
  • 41
    • 0017120827 scopus 로고
    • Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors
    • Grossberg S (1976) Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors. Biol Cybern 23:121-134
    • (1976) Biol Cybern , vol.23 , pp. 121-134
    • Grossberg, S.1
  • 42
    • 0036191654 scopus 로고    scopus 로고
    • Self-organizing map for clustering in the graph domain
    • Günter S, Bunke H (2002) Self-organizing map for clustering in the graph domain, Pattern Recog Lett 23:415-417
    • (2002) Pattern Recog Lett , vol.23 , pp. 415-417
    • Günter, S.1    Bunke, H.2
  • 43
    • 0037844902 scopus 로고    scopus 로고
    • A selforganizing map for adaptive processing of structured data
    • Hagenbuchner M, Sperduti A, Tsoi AC (2003) A selforganizing map for adaptive processing of structured data. IEEE Trans Neural Netw 14(3):491-505
    • (2003) IEEE Trans Neural Netw , vol.14 , Issue.3 , pp. 491-505
    • Hagenbuchner, M.1    Sperduti, A.2    Tsoi, A.C.3
  • 44
    • 1542786232 scopus 로고    scopus 로고
    • A general framework for unsupervised processing of structured data
    • Hammer B, Micheli A, Strickert M, Sperduti A (2004) A general framework for unsupervised processing of structured data. Neurocomputing 57:3-35
    • (2004) Neurocomputing , vol.57 , pp. 3-35
    • Hammer, B.1    Micheli, A.2    Strickert, M.3    Sperduti, A.4
  • 46
    • 0035506768 scopus 로고    scopus 로고
    • Self-organizing maps, vector quantization, and mixture modeling
    • Heskes T (2001) Self-organizing maps, vector quantization, and mixture modeling. IEEE Trans Neural Netw 12(6):1299-1305
    • (2001) IEEE Trans Neural Netw , vol.12 , Issue.6 , pp. 1299-1305
    • Heskes, T.1
  • 52
    • 0344972929 scopus 로고    scopus 로고
    • WEBSOM-self-organizing maps of document collections
    • Kaski S, Honkela T, Lagus K, Kohonen T (1998) WEBSOM-self-organizing maps of document collections. Neurocomputing 21:101-117
    • (1998) Neurocomputing , vol.21 , pp. 101-117
    • Kaski, S.1    Honkela, T.2    Lagus, K.3    Kohonen, T.4
  • 53
    • 0029196895 scopus 로고
    • Adaptive learning method in selforganizing map for edge preserving vector quantization
    • Kim YK, Ra JB (1995) Adaptive learning method in selforganizing map for edge preserving vector quantization. IEEE Trans Neural Netw 6:278-280
    • (1995) IEEE Trans Neural Netw , vol.6 , pp. 278-280
    • Kim, Y.K.1    Ra, J.B.2
  • 54
    • 84949754542 scopus 로고    scopus 로고
    • Evolution map:modeling state transition of typhoon image sequences by spatio-temporal clustering
    • Kitamoto A (2002) Evolution map:modeling state transition of typhoon image sequences by spatio-temporal clustering. Lect Notes Comput Sci 2534/2002:283-290
    • (2002) Lect Notes Comput Sci , vol.2534 , Issue.2002 , pp. 283-290
    • Kitamoto, A.1
  • 55
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59-69
    • (1982) Biol Cybern , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 57
    • 0003023542 scopus 로고
    • Self-organizing maps: optimization approaches
    • Kohonen T, Mäkisara K, Simula O, Kangas J (eds), North-Holland, Amsterdam
    • Kohonen T (1991) Self-organizing maps: optimization approaches. In: Kohonen T, Mäkisara K, Simula O, Kangas J (eds) Artificial neural networks. North-Holland, Amsterdam, pp 981-990
    • (1991) Artificial neural networks , pp. 981-990
    • Kohonen, T.1
  • 60
    • 0344972931 scopus 로고    scopus 로고
    • Self-organizing maps on symbol strings
    • Kohonen T, Somervuo P (1998) Self-organizing maps on symbol strings. Neurocomputing 21:19-30
    • (1998) Neurocomputing , vol.21 , pp. 19-30
    • Kohonen, T.1    Somervuo, P.2
  • 63
    • 2142684345 scopus 로고    scopus 로고
    • Generative probability density model in the self-organizing map
    • Seiffert U, Jain L (eds), Physica-Verlag, Heidelberg
    • Kostiainen T, Lampinen J (2002) Generative probability density model in the self-organizing map. In: Seiffert U, Jain L (eds) Self-organizing neural networks:Recent advances and applications. Physica-Verlag, Heidelberg, pp 75-94
    • (2002) Self-organizing neural networks:Recent advances and applications , pp. 75-94
    • Kostiainen, T.1    Lampinen, J.2
  • 64
    • 0036650984 scopus 로고    scopus 로고
    • PicSOM-selforganizing image retrieval with MPEG-7 content descriptors
    • Laaksonen J, Koskela M, Oja E (2002) PicSOM-selforganizing image retrieval with MPEG-7 content descriptors. IEEE Trans Neural Netw 13(4):841-853
    • (2002) IEEE Trans Neural Netw , vol.13 , Issue.4 , pp. 841-853
    • Laaksonen, J.1    Koskela, M.2    Oja, E.3
  • 65
    • 0000620924 scopus 로고    scopus 로고
    • Faithful representation of separable distributions
    • Lin JK, Grier DG, Cowan JD (1997) Faithful representation of separable distributions. Neural Comput 9:1305-1320
    • (1997) Neural Comput , vol.9 , pp. 1305-1320
    • Lin, J.K.1    Grier, D.G.2    Cowan, J.D.3
  • 66
    • 0023981750 scopus 로고
    • Self-organization in a perceptual network
    • Linsker R (1988) Self-organization in a perceptual network. Computer 21:105-117
    • (1988) Computer , vol.21 , pp. 105-117
    • Linsker, R.1
  • 67
    • 0000353243 scopus 로고
    • How to generate ordered maps by maximizing the mutual information between input and output signals
    • Linsker R (1989) How to generate ordered maps by maximizing the mutual information between input and output signals. Neural Comput 1:402-411
    • (1989) Neural Comput , vol.1 , pp. 402-411
    • Linsker, R.1
  • 68
  • 69
    • 0025448895 scopus 로고
    • Derivation of a class of training algorithms
    • Luttrell SP (1990) Derivation of a class of training algorithms. IEEE Trans Neural Netw 1:229-232
    • (1990) IEEE Trans Neural Netw , vol.1 , pp. 229-232
    • Luttrell, S.P.1
  • 70
    • 0026185546 scopus 로고
    • Code vector density in topographic mappings: scalar case
    • Luttrell SP (1991) Code vector density in topographic mappings: scalar case. IEEE Trans Neural Netw 2:427-436
    • (1991) IEEE Trans Neural Netw , vol.2 , pp. 427-436
    • Luttrell, S.P.1
  • 71
  • 72
    • 0000742931 scopus 로고
    • A ''neural-gas'' network learns topologies
    • Kohonen T, Mäkisara K, Simula O, Kangas J (eds), Espoo, Finland, 24-28 June 1991, vol I, North-Holland, Amsterdam, The Netherlands
    • Martinetz T, Schulten K (1991) A ''neural-gas'' network learns topologies. In: Kohonen T, Mäkisara K, Simula O, Kangas J (eds) Proceedings of International Conference on Artificial Neural Networks (ICANN-91). Espoo, Finland, 24-28 June 1991, vol I, North-Holland, Amsterdam, The Netherlands, pp 397-402
    • (1991) Proceedings of International Conference on Artificial Neural Networks (ICANN-91) , pp. 397-402
    • Martinetz, T.1    Schulten, K.2
  • 73
    • 0027632248 scopus 로고
    • ''Neuralgas'' network for vector quantization and its application to time-series prediction
    • Martinetz T, Berkovich S, Schulten K (1993) ''Neuralgas'' network for vector quantization and its application to time-series prediction. IEEE Trans Neural Netw 4(4):558-569
    • (1993) IEEE Trans Neural Netw , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.1    Berkovich, S.2    Schulten, K.3
  • 74
    • 51849149779 scopus 로고    scopus 로고
    • Adaptive hierarchical incremental grid growing: an architecture for high-dimensional data visualization
    • Kitakyushu, Japan, 11-14 September 2003
    • Merkl D, He S, Dittenbach M, Rauber A (2003) Adaptive hierarchical incremental grid growing: an architecture for high-dimensional data visualization. In: Proceedings of 4th workshop on self-organizing maps (WSOM03). Kitakyushu, Japan, 11-14 September 2003
    • (2003) Proceedings of 4th workshop on self-organizing maps (WSOM03)
    • Merkl, D.1    He, S.2    Dittenbach, M.3    Rauber, A.4
  • 75
    • 0029410705 scopus 로고
    • Self-organization as an iterative kernel smoothing process
    • Mulier F, Cherkassky V (1995) Self-organization as an iterative kernel smoothing process. Neural Comput 7:1165-1177
    • (1995) Neural Comput , vol.7 , pp. 1165-1177
    • Mulier, F.1    Cherkassky, V.2
  • 76
    • 0036859375 scopus 로고    scopus 로고
    • The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data
    • Rauber A, Merkl D, Dittenbach M (2002) The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Trans Neural Netw 13(6):1331-1341
    • (2002) IEEE Trans Neural Netw , vol.13 , Issue.6 , pp. 1331-1341
    • Rauber, A.1    Merkl, D.2    Dittenbach, M.3
  • 77
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Redner RA, Walker HF (1984) Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev 26(2):195-239
    • (1984) SIAM Rev , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 78
    • 84893494615 scopus 로고    scopus 로고
    • Visual mining in music collections with emergent SOM
    • Bielefeld, Germany, September 3-6, 2007, ISBN: 978-3-00-022473-7, CD ROM, available online at
    • Risi S, Mörchen F, Ultsch A, Lewark P (2007) Visual mining in music collections with emergent SOM. In: Proceedings of workshop on self-organizing maps (WSOM '07). Bielefeld, Germany, September 3-6, 2007, ISBN: 978-3-00-022473-7, CD ROM, available online at http://biecoll.ub.uni-bielefeld.de
    • (2007) Proceedings of workshop on self-organizing maps (WSOM '07)
    • Risi, S.1    Mörchen, F.2    Ultsch, A.3    Lewark, P.4
  • 79
    • 0025838954 scopus 로고
    • Asymptotic level density for a class of vector quantization processes
    • Ritter H (1991) Asymptotic level density for a class of vector quantization processes. IEEE Trans Neural Netw 2(1):173-175
    • (1991) IEEE Trans Neural Netw , vol.2 , Issue.1 , pp. 173-175
    • Ritter, H.1
  • 80
    • 0002129811 scopus 로고    scopus 로고
    • Self-organizing maps in non-Euclidean spaces
    • Oja E, Kaski S (eds), Elsevier, Amsterdam
    • Ritter H (1998) Self-organizing maps in non-Euclidean spaces. In: Oja E, Kaski S (eds) Kohonen maps. Elsevier, Amsterdam, pp 97-108
    • (1998) Kohonen maps , pp. 97-108
    • Ritter, H.1
  • 81
    • 34249971816 scopus 로고
    • Self-organizing semantic maps
    • Ritter H, Kohonen T (1989) Self-organizing semantic maps. Biol Cybern 61:241-254
    • (1989) Biol Cybern , vol.61 , pp. 241-254
    • Ritter, H.1    Kohonen, T.2
  • 82
    • 0002961288 scopus 로고
    • On the stationary state of Kohonen's self-organizing sensory mapping
    • Ritter H, Schulten K (1986) On the stationary state of Kohonen's self-organizing sensory mapping. Biol Cybern 54:99-106
    • (1986) Biol Cybern , vol.54 , pp. 99-106
    • Ritter, H.1    Schulten, K.2
  • 83
    • 0024123144 scopus 로고
    • Kohonen's self-organizing maps: exploring their computational capabilities
    • Ritter H, Schulten K (1988) Kohonen's self-organizing maps: exploring their computational capabilities, In:Proceedings of IEEE international conference on neural networks (ICNN). San Diego, CA. IEEE, New York, vol I, pp 109-116
    • (1988) , pp. 109-116
    • Ritter, H.1    Schulten, K.2
  • 86
    • 0742324117 scopus 로고    scopus 로고
    • Temporally asymmetric learning supports sequence processing in multiwinner self-organizing maps
    • Schulz R, Reggia JA (2004) Temporally asymmetric learning supports sequence processing in multiwinner self-organizing maps. Neural Comput 16(3):535-561
    • (2004) Neural Comput , vol.16 , Issue.3 , pp. 535-561
    • Schulz, R.1    Reggia, J.A.2
  • 87
    • 9144234927 scopus 로고    scopus 로고
    • Self-organizing maps and clustering methods for matrix data
    • Seo S, Obermayer K (2004) Self-organizing maps and clustering methods for matrix data. Neural Netw 17(8-9):1211-1229
    • (2004) Neural Netw , vol.17 , Issue.8-9 , pp. 1211-1229
    • Seo, S.1    Obermayer, K.2
  • 90
    • 9144222224 scopus 로고    scopus 로고
    • Online algorithm for the selforganizing map of symbol strings
    • Somervuo PJ (2004) Online algorithm for the selforganizing map of symbol strings. Neural Netw 17(8-9):1231-1240
    • (2004) Neural Netw , vol.17 , Issue.8-9 , pp. 1231-1240
    • Somervuo, P.J.1
  • 91
    • 84893483907 scopus 로고    scopus 로고
    • Indices to evaluate selforganizing maps for structures
    • Germany, 3-6 September 2007. CD ROM, 2007, available online at
    • Steil JJ, Sperduti A (2007) Indices to evaluate selforganizing maps for structures. In: Proceedings of the workshop on self-organizing maps (WSOM07) Bielefeld, Germany, 3-6 September 2007. CD ROM, 2007, available online at http://biecoll.ub.uni-bielefeld.de
    • (2007) Proceedings of the workshop on self-organizing maps (WSOM07) Bielefeld
    • Steil, J.J.1    Sperduti, A.2
  • 92
    • 9144272143 scopus 로고    scopus 로고
    • Unsupervised recursive sequence processing
    • Verleysen M (ed), Bruges, Belgium, 23-25 April 2003. D-Side Publications, Evere, Belgium
    • Strickert M, Hammer B (2003a) Unsupervised recursive sequence processing, In: Verleysen M (ed) European Symposium on Artificial Neural Networks (ESANN 2003). Bruges, Belgium, 23-25 April 2003. D-Side Publications, Evere, Belgium, pp 27-32
    • (2003) European Symposium on Artificial Neural Networks (ESANN 2003) , pp. 27-32
    • Strickert, M.1    Hammer, B.2
  • 94
  • 95
    • 0036565797 scopus 로고    scopus 로고
    • Hierarchical GTM: constructing localized non-linear projection manifolds in a principled way
    • Tiňo P, Nabney I (2002) Hierarchical GTM: constructing localized non-linear projection manifolds in a principled way. IEEE Trans Pattern Anal Mach Intell 24(5):639-656
    • (2002) IEEE Trans Pattern Anal Mach Intell , vol.24 , Issue.5 , pp. 639-656
    • Tiňo, P.1    Nabney, I.2
  • 97
    • 0025608647 scopus 로고
    • An analysis of Kohonen's self-organizing maps using a system of energy functions
    • Tolat V (1990) An analysis of Kohonen's self-organizing maps using a system of energy functions. Biol Cybern 64:155-164
    • (1990) Biol Cybern , vol.64 , pp. 155-164
    • Tolat, V.1
  • 99
    • 33745890364 scopus 로고    scopus 로고
    • ESOM-Maps: Tools for clustering, visualization, and classification with emergent SOM
    • Technical Report No. 46, Department of Mathematics and Computer Science, University of Marburg, Germany
    • Ultsch A, Mörchen F (2005) ESOM-Maps: Tools for clustering, visualization, and classification with emergent SOM. Technical Report No. 46, Department of Mathematics and Computer Science, University of Marburg, Germany
    • (2005)
    • Ultsch, A.1    Mörchen, F.2
  • 100
    • 84984054840 scopus 로고
    • A new learning approach based on equidistortion principle for optimal vector quantizer design
    • Linthicum Heights, MD. IEEE, Piscataway, NJ
    • Ueda N, Nakano R (1993) A new learning approach based on equidistortion principle for optimal vector quantizer design. In: Proceedings of IEEE NNSP93, Linthicum Heights, MD. IEEE, Piscataway, NJ, pp 362-371
    • (1993) Proceedings of IEEE NNSP93 , pp. 362-371
    • Ueda, N.1    Nakano, R.2
  • 102
    • 0031128354 scopus 로고    scopus 로고
    • Topology-preserving map formation achieved with a purely local unsupervised competitive learning rule
    • Van Hulle MM (1997a) Topology-preserving map formation achieved with a purely local unsupervised competitive learning rule. Neural Netw 10(3):431-446
    • (1997) Neural Netw , vol.10 , Issue.3 , pp. 431-446
    • Van Hulle, M.M.1
  • 103
    • 0345605721 scopus 로고    scopus 로고
    • Nonparametric density estimation and regression achieved with topographic maps maximizing the information-theoretic entropy of their outputs
    • Van Hulle MM (1997b) Nonparametric density estimation and regression achieved with topographic maps maximizing the information-theoretic entropy of their outputs. Biol Cybern 77:49-61
    • (1997) Biol Cybern , vol.77 , pp. 49-61
    • Van Hulle, M.M.1
  • 104
    • 0001405580 scopus 로고    scopus 로고
    • Kernel-based equiprobabilistic topographic map formation
    • Van Hulle MM (1998) Kernel-based equiprobabilistic topographic map formation. Neural Comput 10(7):1847-1871
    • (1998) Neural Comput , vol.10 , Issue.7 , pp. 1847-1871
    • Van Hulle, M.M.1
  • 106
    • 0036633931 scopus 로고    scopus 로고
    • Kernel-based topographic map formation by local density modeling
    • Van Hulle MM (2002a) Kernel-based topographic map formation by local density modeling. Neural Comput 14(7):1561-1573
    • (2002) Neural Comput , vol.14 , Issue.7 , pp. 1561-1573
    • Van Hulle, M.M.1
  • 107
    • 0036673228 scopus 로고    scopus 로고
    • Joint entropy maximization in kernel-based topographic maps
    • Van Hulle MM (2002b) Joint entropy maximization in kernel-based topographic maps. Neural Comput 14(8):1887-1906
    • (2002) Neural Comput , vol.14 , Issue.8 , pp. 1887-1906
    • Van Hulle, M.M.1
  • 108
    • 13844299474 scopus 로고    scopus 로고
    • Maximumlikelihood topographic map formation
    • Van HulleMM (2005a) Maximumlikelihood topographic map formation. Neural Comput 17(3):503-513
    • (2005) Neural Comput , vol.17 , Issue.3 , pp. 503-513
    • Van Hulle, M.M.1
  • 110
    • 84881516879 scopus 로고    scopus 로고
    • Kernel-based topographic maps:theory and applications
    • Wah BW (ed), Wiley, Hoboken, vol 3
    • Van Hulle MM (2009) Kernel-based topographic maps:theory and applications. In: Wah BW (ed) Encyclopedia of computer science and engineering. Wiley, Hoboken, vol 3, pp 1633-1650
    • (2009) Encyclopedia of computer science and engineering , pp. 1633-1650
    • Van Hulle, M.M.1
  • 111
    • 3543101945 scopus 로고    scopus 로고
    • Optimal smoothing of kernel-based topographic maps with application to density-based clustering of shapes
    • Van Hulle MM, Gautama T (2004) Optimal smoothing of kernel-based topographic maps with application to density-based clustering of shapes. J VLSI Signal Proces Syst Signal, Image, Video Technol 37:211-222
    • (2004) J VLSI Signal Proces Syst Signal, Image, Video Technol , vol.37 , pp. 211-222
    • Van Hulle, M.M.1    Gautama, T.2
  • 113
    • 0010684318 scopus 로고    scopus 로고
    • Using the SOM and local models in time-series prediction
    • Finland, 4-6 June 1997. Helsinki University of Technology, Espoo, Finland
    • Vesanto J (1997) Using the SOM and local models in time-series prediction. In: Proceedings of workshop on self-organizing maps (WSOM 1997). Helsinki, Finland, 4-6 June 1997. Helsinki University of Technology, Espoo, Finland, pp 209-214
    • (1997) Proceedings of workshop on self-organizing maps (WSOM 1997). Helsinki , pp. 209-214
    • Vesanto, J.1
  • 114
    • 0036790884 scopus 로고    scopus 로고
    • Recursive self-organizing maps
    • Voegtlin T (2002) Recursive self-organizing maps. Neural Netw 15(8-9):979-992
    • (2002) Neural Netw , vol.15 , Issue.8-9 , pp. 979-992
    • Voegtlin, T.1
  • 115
    • 0038266121 scopus 로고    scopus 로고
    • The time-organized map algorithm:extending the self-organizing map to spatiotemporal signals
    • Wiemer JC (2003) The time-organized map algorithm:extending the self-organizing map to spatiotemporal signals. Neural Comput 15(5):1143-1171
    • (2003) Neural Comput , vol.15 , Issue.5 , pp. 1143-1171
    • Wiemer, J.C.1
  • 116
    • 0017166860 scopus 로고
    • How patterned neural connections can be set up by self-organization
    • Willshaw DJ, von der Malsburg C (1976) How patterned neural connections can be set up by self-organization. Proc Roy Soc Lond B 194:431-445
    • (1976) Proc Roy Soc Lond B , vol.194 , pp. 431-445
    • Willshaw, D.J.1    von der Malsburg, C.2
  • 117
    • 0035272084 scopus 로고    scopus 로고
    • Self-organizing mixture networks for probability density estimation
    • Yin H, Allinson NM (2001) Self-organizing mixture networks for probability density estimation. IEEE Trans Neural Netw 12:405-411
    • (2001) IEEE Trans Neural Netw , vol.12 , pp. 405-411
    • Yin, H.1    Allinson, N.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.