메뉴 건너뛰기




Volumn 7063 LNCS, Issue PART 2, 2011, Pages 406-415

Fast growing self organizing map for text clustering

Author keywords

Document Representation; Fast Text Clustering; GSOM

Indexed keywords

ACCURACY LEVEL; DOCUMENT REPRESENTATION; DOCUMENT VECTORS; FEATURE REPRESENTATION; FEATURE SPACE; GROWING SELF ORGANIZING MAP; GSOM; ITS EFFICIENCIES; LOW DIMENSIONAL; SELF ORGANIZING PROCESS; SIMILARITY CALCULATION; TEXT CLUSTERING;

EID: 81855169778     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-24958-7_48     Document Type: Conference Paper
Times cited : (7)

References (15)
  • 1
    • 34247334686 scopus 로고    scopus 로고
    • Inference and evaluation of the multinomial mixture model for text clustering
    • Rigouste, L., Cappé, O., Yvon, F.: Inference and evaluation of the multinomial mixture model for text clustering. Information Processing & Management 43(5), 1260-1280 (2007)
    • (2007) Information Processing & Management , vol.43 , Issue.5 , pp. 1260-1280
    • Rigouste, L.1    Cappé, O.2    Yvon, F.3
  • 2
    • 60249092779 scopus 로고    scopus 로고
    • Clustering of document collection-A weighting approach
    • Aliguliyev, R.M.: Clustering of document collection-A weighting approach. Expert Systems with Applications 36(4), 7904-7916 (2009)
    • (2009) Expert Systems with Applications , vol.36 , Issue.4 , pp. 7904-7916
    • Aliguliyev, R.M.1
  • 3
    • 38649135048 scopus 로고    scopus 로고
    • A new approach on search for similar documents with multiple categories using fuzzy clustering
    • Saraçoglu, R.I., Tütüncü, K., Allahverdi, N.: A new approach on search for similar documents with multiple categories using fuzzy clustering. Expert Systems with Applications 34(4), 2545-2554 (2008)
    • (2008) Expert Systems with Applications , vol.34 , Issue.4 , pp. 2545-2554
    • Saraçoglu, R.I.1    Tütüncü, K.2    Allahverdi, N.3
  • 4
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological cybernetics 43(1), 59-69 (1982)
    • (1982) Biological Cybernetics , vol.43 , Issue.1 , pp. 59-69
    • Kohonen, T.1
  • 5
    • 69249222999 scopus 로고    scopus 로고
    • A new document representation using term frequency and vectorized graph connectionists with application to document retrieval
    • Chow, T.W.S., Zhang, H., Rahman, M.: A new document representation using term frequency and vectorized graph connectionists with application to document retrieval. Expert Systems with Applications 36(10), 12023-12035 (2009)
    • (2009) Expert Systems with Applications , vol.36 , Issue.10 , pp. 12023-12035
    • Chow, T.W.S.1    Zhang, H.2    Rahman, M.3
  • 6
    • 58349122875 scopus 로고    scopus 로고
    • An attentive self-organizing neural model for text mining
    • Hung, C., Chi, Y.L., Chen, T.Y.: An attentive self-organizing neural model for text mining. Expert Systems with Applications 36(3), 7064-7071 (2009)
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 7064-7071
    • Hung, C.1    Chi, Y.L.2    Chen, T.Y.3
  • 7
    • 26944478556 scopus 로고    scopus 로고
    • Comparing Dimension Reduction Techniques for Document Clustering
    • Kégl, B., Lee, H.-H. (eds.) Canadian AI 2005. Springer, Heidelberg
    • Tang, B., Shepherd, M.A., Heywood, M.I., Luo, X.: Comparing Dimension Reduction Techniques for Document Clustering. In: Kégl, B., Lee, H.-H. (eds.) Canadian AI 2005. LNCS (LNAI), vol. 3501, pp. 292-296. Springer, Heidelberg (2005)
    • (2005) LNCS (LNAI) , vol.3501 , pp. 292-296
    • Tang, B.1    Shepherd, M.A.2    Heywood, M.I.3    Luo, X.4
  • 8
    • 10844283610 scopus 로고    scopus 로고
    • The BankSearch web document dataset: Investigating unsupervised clustering and category similarity
    • Sinka, M.P., Corne, D.W.: The BankSearch web document dataset: investigating unsupervised clustering and category similarity. Journal of Network and Computer Applications 28(2), 129-146 (2005)
    • (2005) Journal of Network and Computer Applications , vol.28 , Issue.2 , pp. 129-146
    • Sinka, M.P.1    Corne, D.W.2
  • 10
    • 60849139388 scopus 로고    scopus 로고
    • Using the self organizing map for clustering of text documents
    • Isa, D., Kallimani, V., Lee, L.H.: Using the self organizing map for clustering of text documents. Expert Systems with Applications 36(5), 9584-9591 (2009)
    • (2009) Expert Systems with Applications , vol.36 , Issue.5 , pp. 9584-9591
    • Isa, D.1    Kallimani, V.2    Lee, L.H.3
  • 12
    • 33750126257 scopus 로고
    • Growing Grid - A self-organizing network with constant neighborhood range and adaptation strength
    • Fritzke, B.: Growing Grid - a self-organizing network with constant neighborhood range and adaptation strength. Neural Processing Letters 2, 9-13 (1995)
    • (1995) Neural Processing Letters , vol.2 , pp. 9-13
    • Fritzke, B.1
  • 13
  • 14
    • 0034187344 scopus 로고    scopus 로고
    • Self organizing of a massive document collection
    • Kohonen, T., et al.: Self organizing of a massive document collection. IEEE Transactions on Neural Networks 11(3), 574-585 (2000)
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.3 , pp. 574-585
    • Kohonen, T.1
  • 15
    • 0036859375 scopus 로고    scopus 로고
    • The growing hierarchical self-organizing map: Exploratory analysis of high-dimensional data
    • Rauber, A., Merkl, D., Dittenbach, M.: The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Transactions on Neural Networks 13(6), 1331-1341 (2002)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.6 , pp. 1331-1341
    • Rauber, A.1    Merkl, D.2    Dittenbach, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.