-
2
-
-
79954615800
-
Current issues with acetaminophen hepatotoxicity-a clinically relevant model to test the efficacy of natural products
-
Jaeschke H, McGill MR, Williams CD, Ramachandran A. Current issues with acetaminophen hepatotoxicity-a clinically relevant model to test the efficacy of natural products. Life Sci 2011;88:737-745.
-
(2011)
Life Sci
, vol.88
, pp. 737-745
-
-
Jaeschke, H.1
McGill, M.R.2
Williams, C.D.3
Ramachandran, A.4
-
3
-
-
0024345539
-
Subcellular binding and effects on calcium homeostasis produced by acetaminophen and a nonhepatotoxic regioisomer, 3′-hydroxyacetanilide, in mouse-liver
-
Tirmenstein MA, Nelson SD. Subcellular binding and effects on calcium homeostasis produced by acetaminophen and a nonhepatotoxic regioisomer, 3′-hydroxyacetanilide, in mouse-liver. J Biol Chem 1989;264:9814-9819.
-
(1989)
J Biol Chem
, vol.264
, pp. 9814-9819
-
-
Tirmenstein, M.A.1
Nelson, S.D.2
-
4
-
-
84859708101
-
The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation
-
McGill MR, Sharpe MR, Williams CD, Taha M, Curry SC, Jaeschke H. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Invest 2012;122:1574-1583.
-
(2012)
J Clin Invest
, vol.122
, pp. 1574-1583
-
-
McGill, M.R.1
Sharpe, M.R.2
Williams, C.D.3
Taha, M.4
Curry, S.C.5
Jaeschke, H.6
-
5
-
-
83255192265
-
Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity
-
Jaeschke H, Williams CD, Ramachandran A, Bajt ML. Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int 2012;32:8-20.
-
(2012)
Liver Int
, vol.32
, pp. 8-20
-
-
Jaeschke, H.1
Williams, C.D.2
Ramachandran, A.3
Bajt, M.L.4
-
6
-
-
84855892790
-
Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity
-
Jaeschke H, McGill MR, Ramachandran A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 2012;44:88-106.
-
(2012)
Drug Metab Rev
, vol.44
, pp. 88-106
-
-
Jaeschke, H.1
McGill, M.R.2
Ramachandran, A.3
-
7
-
-
79251501315
-
Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease
-
Itoh N, Ornitz DM. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem 2011;149:121-130.
-
(2011)
J Biochem
, vol.149
, pp. 121-130
-
-
Itoh, N.1
Ornitz, D.M.2
-
8
-
-
74049108945
-
Fibroblast growth factor 21: from pharmacology to physiology
-
Kliewer SA, Mangelsdorf DJ. Fibroblast growth factor 21: from pharmacology to physiology. Am J Clin Nutr 2010;91:254S-257S.
-
(2010)
Am J Clin Nutr
, vol.91
-
-
Kliewer, S.A.1
Mangelsdorf, D.J.2
-
9
-
-
20444435873
-
FGF-21 as a novel metabolic regulator
-
Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, et al. FGF-21 as a novel metabolic regulator. J Clin Invest 2005;115:1627-1635.
-
(2005)
J Clin Invest
, vol.115
, pp. 1627-1635
-
-
Kharitonenkov, A.1
Shiyanova, T.L.2
Koester, A.3
Ford, A.M.4
Micanovic, R.5
Galbreath, E.J.6
-
10
-
-
33846418834
-
The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21
-
Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT, et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 2007;148:774-781.
-
(2007)
Endocrinology
, vol.148
, pp. 774-781
-
-
Kharitonenkov, A.1
Wroblewski, V.J.2
Koester, A.3
Chen, Y.F.4
Clutinger, C.K.5
Tigno, X.T.6
-
11
-
-
67649823642
-
FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response
-
Proc Natl Acad Sci U S A
-
Potthoff MJ, Inagaki T, Satapati S, Ding X, He T, Goetz R, et al. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A 2009;106:10853-10858.
-
(2009)
, vol.106
, pp. 10853-10858
-
-
Potthoff, M.J.1
Inagaki, T.2
Satapati, S.3
Ding, X.4
He, T.5
Goetz, R.6
-
12
-
-
34249686631
-
Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
-
Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 2007;5:415-425.
-
(2007)
Cell Metab
, vol.5
, pp. 415-425
-
-
Inagaki, T.1
Dutchak, P.2
Zhao, G.3
Ding, X.4
Gautron, L.5
Parameswara, V.6
-
13
-
-
45649085226
-
Inhibition of growth hormone signaling by the fasting-induced hormone FGF21
-
Inagaki T, Lin VY, Goetz R, Mohammadi M, Mangelsdorf DJ, Kliewer SA. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab 2008;8:77-83.
-
(2008)
Cell Metab
, vol.8
, pp. 77-83
-
-
Inagaki, T.1
Lin, V.Y.2
Goetz, R.3
Mohammadi, M.4
Mangelsdorf, D.J.5
Kliewer, S.A.6
-
14
-
-
48349146527
-
Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans
-
Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou ZG, Liu F, et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 2008;57:1246-1253.
-
(2008)
Diabetes
, vol.57
, pp. 1246-1253
-
-
Zhang, X.1
Yeung, D.C.2
Karpisek, M.3
Stejskal, D.4
Zhou, Z.G.5
Liu, F.6
-
15
-
-
84862928486
-
Distinct changes in serum fibroblast growth factor 21 levels in different subtypes of diabetes
-
Xiao Y, Xu A, Law LS, Chen C, Li H, Li X, et al. Distinct changes in serum fibroblast growth factor 21 levels in different subtypes of diabetes. J Clin Endocrinol Metab 2012;97:E54-58.
-
(2012)
J Clin Endocrinol Metab
, vol.97
-
-
Xiao, Y.1
Xu, A.2
Law, L.S.3
Chen, C.4
Li, H.5
Li, X.6
-
16
-
-
77957359658
-
Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride
-
Li H, Fang Q, Gao F, Fan J, Zhou J, Wang X, et al. Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. J Hepatol 2010;53:934-940.
-
(2010)
J Hepatol
, vol.53
, pp. 934-940
-
-
Li, H.1
Fang, Q.2
Gao, F.3
Fan, J.4
Zhou, J.5
Wang, X.6
-
17
-
-
70350093621
-
Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice
-
Johnson CL, Weston JY, Chadi SA, Fazio EN, Huff MW, Kharitonenkov A, et al. Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice. Gastroenterology 2009;137:1795-1804.
-
(2009)
Gastroenterology
, vol.137
, pp. 1795-1804
-
-
Johnson, C.L.1
Weston, J.Y.2
Chadi, S.A.3
Fazio, E.N.4
Huff, M.W.5
Kharitonenkov, A.6
-
18
-
-
84861324386
-
FGF21 is increased by inflammatory stimuli and protects leptin-deficient ob/ob mice from the toxicity of sepsis
-
Feingold KR, Grunfeld C, Heuer JG, Gupta A, Cramer M, Zhang T, et al. FGF21 is increased by inflammatory stimuli and protects leptin-deficient ob/ob mice from the toxicity of sepsis. Endocrinology 2012;153:2689-2700.
-
(2012)
Endocrinology
, vol.153
, pp. 2689-2700
-
-
Feingold, K.R.1
Grunfeld, C.2
Heuer, J.G.3
Gupta, A.4
Cramer, M.5
Zhang, T.6
-
19
-
-
70349324370
-
Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver
-
Hotta Y, Nakamura H, Konishi M, Murata Y, Takagi H, Matsumura S, et al. Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 2009;150:4625-4633.
-
(2009)
Endocrinology
, vol.150
, pp. 4625-4633
-
-
Hotta, Y.1
Nakamura, H.2
Konishi, M.3
Murata, Y.4
Takagi, H.5
Matsumura, S.6
-
20
-
-
84861547908
-
Toll-like receptor-4 mediates obesity-induced non-alcoholic steatohepatitis through activation of X-box binding protein-1 in mice
-
Ye D, Li FY, Lam KS, Li H, Jia W, Wang Y, et al. Toll-like receptor-4 mediates obesity-induced non-alcoholic steatohepatitis through activation of X-box binding protein-1 in mice. Gut 2012;61:1058-1067.
-
(2012)
Gut
, vol.61
, pp. 1058-1067
-
-
Ye, D.1
Li, F.Y.2
Lam, K.S.3
Li, H.4
Jia, W.5
Wang, Y.6
-
21
-
-
54449085766
-
Mitochondrial dysfunction contributes to the increased vulnerabilities of adiponectin knockout mice to liver injury
-
Zhou M, Xu A, Tam PK, Lam KS, Chan L, Hoo RL, et al. Mitochondrial dysfunction contributes to the increased vulnerabilities of adiponectin knockout mice to liver injury. Hepatology 2008;48:1087-1096.
-
(2008)
Hepatology
, vol.48
, pp. 1087-1096
-
-
Zhou, M.1
Xu, A.2
Tam, P.K.3
Lam, K.S.4
Chan, L.5
Hoo, R.L.6
-
22
-
-
80053409251
-
Growth hormone induces hepatic production of fibroblast growth factor 21 through a mechanism dependent on lipolysis in adipocytes
-
Chen W, Hoo RL, Konishi M, Itoh N, Lee PC, Ye HY, et al. Growth hormone induces hepatic production of fibroblast growth factor 21 through a mechanism dependent on lipolysis in adipocytes. J Biol Chem 2011;286:34559-34566.
-
(2011)
J Biol Chem
, vol.286
, pp. 34559-34566
-
-
Chen, W.1
Hoo, R.L.2
Konishi, M.3
Itoh, N.4
Lee, P.C.5
Ye, H.Y.6
-
23
-
-
34249711964
-
Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
-
Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 2007;5:426-437.
-
(2007)
Cell Metab
, vol.5
, pp. 426-437
-
-
Badman, M.K.1
Pissios, P.2
Kennedy, A.R.3
Koukos, G.4
Flier, J.S.5
Maratos-Flier, E.6
-
24
-
-
80053425902
-
c-Jun N-terminal kinase (JNK)-dependent acute liver injury from acetaminophen or tumor necrosis factor (TNF) requires mitochondrial Sab protein expression in mice
-
Win S, Than TA, Han D, Petrovic LM, Kaplowitz N. c-Jun N-terminal kinase (JNK)-dependent acute liver injury from acetaminophen or tumor necrosis factor (TNF) requires mitochondrial Sab protein expression in mice. J Biol Chem 2011;286:35071-35078.
-
(2011)
J Biol Chem
, vol.286
, pp. 35071-35078
-
-
Win, S.1
Than, T.A.2
Han, D.3
Petrovic, L.M.4
Kaplowitz, N.5
-
25
-
-
80053305353
-
Aldo-keto reductase-7A protects liver cells and tissues from acetaminophen-induced oxidative stress and hepatotoxicity
-
Ahmed MM, Wang T, Luo Y, Ye S, Wu Q, Guo Z, et al. Aldo-keto reductase-7A protects liver cells and tissues from acetaminophen-induced oxidative stress and hepatotoxicity. Hepatology 2011;54:1322-1332.
-
(2011)
Hepatology
, vol.54
, pp. 1322-1332
-
-
Ahmed, M.M.1
Wang, T.2
Luo, Y.3
Ye, S.4
Wu, Q.5
Guo, Z.6
-
26
-
-
84867041441
-
Molecular basis of electrophilic and oxidative defense: promises and perils of Nrf2
-
Ma Q, He X. Molecular basis of electrophilic and oxidative defense: promises and perils of Nrf2. Pharmacol Rev 2012;64:1055-1081.
-
(2012)
Pharmacol Rev
, vol.64
, pp. 1055-1081
-
-
Ma, Q.1
He, X.2
-
27
-
-
58849090439
-
Transcribe to survive: transcriptional control of antioxidant defense programs for neuroprotection in Parkinson's disease
-
Clark J, Simon DK. Transcribe to survive: transcriptional control of antioxidant defense programs for neuroprotection in Parkinson's disease. Antioxid Redox Signal 2009;11:509-528.
-
(2009)
Antioxid Redox Signal
, vol.11
, pp. 509-528
-
-
Clark, J.1
Simon, D.K.2
-
28
-
-
84871320315
-
p53 orchestrates the PGC-1alpha-mediated antioxidant response upon mild redox and metabolic imbalance
-
Aquilano K, Baldelli S, Pagliei B, Cannata SM, Rotilio G, Ciriolo MR. p53 orchestrates the PGC-1alpha-mediated antioxidant response upon mild redox and metabolic imbalance. Antioxid Redox Signal 2013;18:386-399.
-
(2013)
Antioxid Redox Signal
, vol.18
, pp. 386-399
-
-
Aquilano, K.1
Baldelli, S.2
Pagliei, B.3
Cannata, S.M.4
Rotilio, G.5
Ciriolo, M.R.6
-
29
-
-
84863012022
-
FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis
-
Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 2012;26:271-281.
-
(2012)
Genes Dev
, vol.26
, pp. 271-281
-
-
Fisher, F.M.1
Kleiner, S.2
Douris, N.3
Fox, E.C.4
Mepani, R.J.5
Verdeguer, F.6
-
30
-
-
7044226521
-
Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes
-
Kon K, Kim JS, Jaeschke H, Lemasters JJ. Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology 2004;40:1170-1179.
-
(2004)
Hepatology
, vol.40
, pp. 1170-1179
-
-
Kon, K.1
Kim, J.S.2
Jaeschke, H.3
Lemasters, J.J.4
-
31
-
-
11144310166
-
Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice
-
Masubuchi Y, Suda C, Horie T. Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J Hepatol 2005;42:110-116.
-
(2005)
J Hepatol
, vol.42
, pp. 110-116
-
-
Masubuchi, Y.1
Suda, C.2
Horie, T.3
-
32
-
-
46649084880
-
Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury
-
Hanawa N, Shinohara M, Saberi B, Gaarde WA, Han D, Kaplowitz N. Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. J Biol Chem 2008;283:13565-13577.
-
(2008)
J Biol Chem
, vol.283
, pp. 13565-13577
-
-
Hanawa, N.1
Shinohara, M.2
Saberi, B.3
Gaarde, W.A.4
Han, D.5
Kaplowitz, N.6
-
33
-
-
33745758229
-
c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity
-
Gunawan BK, Liu ZX, Han D, Hanawa N, Gaarde WA, Kaplowitz N. c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gastroenterology 2006;131:165-178.
-
(2006)
Gastroenterology
, vol.131
, pp. 165-178
-
-
Gunawan, B.K.1
Liu, Z.X.2
Han, D.3
Hanawa, N.4
Gaarde, W.A.5
Kaplowitz, N.6
-
34
-
-
79954416526
-
The cytoprotective role of the Keap1-Nrf2 pathway
-
Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 2011;85:241-272.
-
(2011)
Arch Toxicol
, vol.85
, pp. 241-272
-
-
Baird, L.1
Dinkova-Kostova, A.T.2
-
35
-
-
0035153227
-
High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes
-
Enomoto A, Itoh K, Nagayoshi E, Haruta J, Kimura T, O'Connor T, et al. High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol Sci 2001;59:169-177.
-
(2001)
Toxicol Sci
, vol.59
, pp. 169-177
-
-
Enomoto, A.1
Itoh, K.2
Nagayoshi, E.3
Haruta, J.4
Kimura, T.5
O'Connor, T.6
-
36
-
-
28144445947
-
Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity
-
Okawa H, Motohashi H, Kobayashi A, Aburatani H, Kensler TW, Yamamoto M. Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity. Biochem Biophys Res Commun 2006;339:79-88.
-
(2006)
Biochem Biophys Res Commun
, vol.339
, pp. 79-88
-
-
Okawa, H.1
Motohashi, H.2
Kobayashi, A.3
Aburatani, H.4
Kensler, T.W.5
Yamamoto, M.6
-
37
-
-
79953186142
-
PGC-1 coactivators in the control of energy metabolism
-
Shanghai)
-
Liu C, Lin JD. PGC-1 coactivators in the control of energy metabolism. Acta Biochim Biophys Sin (Shanghai) 2011;43:248-257.
-
(2011)
Acta Biochim Biophys Sin
, vol.43
, pp. 248-257
-
-
Liu, C.1
Lin, J.D.2
-
38
-
-
84877805400
-
Punctum on two different transcription factors regulated by PGC-1alpha: nuclear factor erythroid-derived 2-like 2 and nuclear respiratory factor 2
-
Baldelli S, Aquilano K, Ciriolo MR. Punctum on two different transcription factors regulated by PGC-1alpha: nuclear factor erythroid-derived 2-like 2 and nuclear respiratory factor 2. Biochim Biophys Acta 2013;1830:4137-4146.
-
(2013)
Biochim Biophys Acta
, vol.1830
, pp. 4137-4146
-
-
Baldelli, S.1
Aquilano, K.2
Ciriolo, M.R.3
|