메뉴 건너뛰기




Volumn 61, Issue 8, 2010, Pages 2040-2045

A new approach for online adaptive modeling using incremental support vector regression

Author keywords

Melt index; On line modeling; Sample similarity; Support vector regression

Indexed keywords

ADAPTIVE MODELING; GENERALIZATION ABILITY; KARUSH-KUHN-TUCKER CONDITION; MELT INDEX; MODEL GENERALIZATION; MODEL-BASED; NEW APPROACHES; ONLINE MODELING; PREDICTION ERRORS; PREDICTIVE MODELS; PROCESS CHARACTERISTICS; SAMPLE SIMILARITY; SUPPORT VECTOR REGRESSION; SUPPORT VECTOR REGRESSIONS; TRAINING SAMPLE;

EID: 77955789911     PISSN: 04381157     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (8)

References (17)
  • 4
    • 0141765796 scopus 로고    scopus 로고
    • Accurate online support vector regression
    • Ma J, Theiler J, Perkins S. Accurate online support vector regression. Neural Computation, 2003, 15(11): 2683-2704
    • (2003) Neural Computation , vol.15 , Issue.11 , pp. 2683-2704
    • Ma, J.1    Theiler, J.2    Perkins, S.3
  • 5
    • 13644275571 scopus 로고    scopus 로고
    • On-line support vector machine training algorithm and its application
    • Wang Hui, Pi Daoying, Sun Youxian. On-line support vector machine training algorithm and its application. Journal of Zhejiang University: Engineering Science, 2004, 38(12): 1642-1645, 1649
    • (2004) Journal of Zhejiang University: Engineering Science , vol.38 , Issue.12
    • Wang, H.1    Pi, D.2    Sun, Y.3
  • 6
    • 65149106072 scopus 로고    scopus 로고
    • Prediction model of ion concentration based on improved online support vector regression
    • Wang Lingyun, Gui Weihua, Liu Meihua, Yang Chunhua. Prediction model of ion concentration based on improved online support vector regression. Control and Decision, 2009, 24(4): 537-541
    • (2009) Control and Decision , vol.24 , Issue.4 , pp. 537-541
    • Wang, L.1    Gui, W.2    Liu, M.3    Yang, C.4
  • 7
    • 33745777639 scopus 로고    scopus 로고
    • Incremental support vector learning: analysis, implementation and application
    • Laskov P, Gehl C, Kruger S, Muller K. Incremental support vector learning: analysis, implementation and application. Journal of Machine Learning Research, 2006, 7(9): 1909-1936
    • (2006) Journal of Machine Learning Research , vol.7 , Issue.9 , pp. 1909-1936
    • Laskov, P.1    Gehl, C.2    Kruger, S.3    Muller, K.4
  • 8
    • 0742290061 scopus 로고    scopus 로고
    • A new algorithm for online structure and parameter adaptation of RBF networks
    • Alexandridis A, Sarimveis H, Bafas G. A new algorithm for online structure and parameter adaptation of RBF networks. Neural Networks, 2003, 16(7): 1003-1017
    • (2003) Neural Networks , vol.16 , Issue.7 , pp. 1003-1017
    • Alexandridis, A.1    Sarimveis, H.2    Bafas, G.3
  • 9
    • 67650083264 scopus 로고    scopus 로고
    • Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size
    • Liu Y, Hu N, Wang H, Li P. Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size. Ind. Eng. Chem. Res., 2009, 48(12): 5731-5741
    • (2009) Ind. Eng. Chem. Res. , vol.48 , Issue.12 , pp. 5731-5741
    • Liu, Y.1    Hu, N.2    Wang, H.3    Li, P.4
  • 10
    • 0035351774 scopus 로고    scopus 로고
    • An analysis of SVMs generalization performance
    • Zhou Weida, Zhang Li, Jiao Licheng. An analysis of SVMs generalization performance. Acta Electronica Sinica, 2001, 29(5): 590-594
    • (2001) Acta Electronica Sinica , vol.29 , Issue.5 , pp. 590-594
    • Zhou, W.1    Zhang, L.2    Jiao, L.3
  • 11
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: robustness and sparse approximation
    • Suykens J, Brabanter J, Lukas L, Vandewalle J. Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing, 2002, 48(1-4): 85-105
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 85-105
    • Suykens, J.1    Brabanter, J.2    Lukas, L.3    Vandewalle, J.4
  • 12
    • 69349092894 scopus 로고    scopus 로고
    • Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR
    • Cui W, Yan X. Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR. Chemometrics and Intelligent Laboratory Systems, 2009, 98(2): 130-135
    • (2009) Chemometrics and Intelligent Laboratory Systems , vol.98 , Issue.2 , pp. 130-135
    • Cui, W.1    Yan, X.2
  • 13
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • Cheng C, Chiu M S. A new data-based methodology for nonlinear process modeling. Chemical Engineering Science, 2004, 59(13): 2801-2810
    • (2004) Chemical Engineering Science , vol.59 , Issue.13 , pp. 2801-2810
    • Cheng, C.1    Chiu, M.S.2
  • 14
    • 84863115858 scopus 로고    scopus 로고
    • Generalised predictive control for non-linear process systems based on lazy learning
    • Pan T H, Li S Y. Generalised predictive control for non-linear process systems based on lazy learning. International Journal of Modelling, Identification and Control, 2006, 1(3): 230-238
    • (2006) International Journal of Modelling, Identification and Control , vol.1 , Issue.3 , pp. 230-238
    • Pan, T.H.1    Li, S.Y.2
  • 15
    • 8444241860 scopus 로고    scopus 로고
    • Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
    • Cawley G, Talbot N. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Networks, 2004, 17(10): 1467-1475
    • (2004) Neural Networks , vol.17 , Issue.10 , pp. 1467-1475
    • Cawley, G.1    Talbot, N.2
  • 16
    • 50049088279 scopus 로고    scopus 로고
    • Adaptive local learning based least squares support vector regression with application to online modeling for fermentation processes
    • Liu Yi, Wang Haiqing, Li Ping. Adaptive local learning based least squares support vector regression with application to online modeling for fermentation processes. Journal of Chemical Industry and Engineering(China), 2008, 59(8): 2052-2057
    • (2008) Journal of Chemical Industry and Engineering(China) , vol.59 , Issue.8 , pp. 2052-2057
    • Liu, Y.1    Wang, H.2    Li, P.3
  • 17
    • 67349249355 scopus 로고    scopus 로고
    • Orthogonal-least-squares regression: a unified approach for data modeling
    • Chen S, Hong X, Luk B, Harris C. Orthogonal-least-squares regression: a unified approach for data modeling. Neurocomputing, 2009, 72(10-12): 2670-2681
    • (2009) Neurocomputing , vol.72 , Issue.10-12 , pp. 2670-2681
    • Chen, S.1    Hong, X.2    Luk, B.3    Harris, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.