-
2
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry. Computers & Chemical Engineering, 2009, 33(4): 795-814
-
(2009)
Computers & Chemical Engineering
, vol.33
, Issue.4
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
4
-
-
0141765796
-
Accurate online support vector regression
-
Ma J, Theiler J, Perkins S. Accurate online support vector regression. Neural Computation, 2003, 15(11): 2683-2704
-
(2003)
Neural Computation
, vol.15
, Issue.11
, pp. 2683-2704
-
-
Ma, J.1
Theiler, J.2
Perkins, S.3
-
5
-
-
13644275571
-
On-line support vector machine training algorithm and its application
-
Wang Hui, Pi Daoying, Sun Youxian. On-line support vector machine training algorithm and its application. Journal of Zhejiang University: Engineering Science, 2004, 38(12): 1642-1645, 1649
-
(2004)
Journal of Zhejiang University: Engineering Science
, vol.38
, Issue.12
-
-
Wang, H.1
Pi, D.2
Sun, Y.3
-
6
-
-
65149106072
-
Prediction model of ion concentration based on improved online support vector regression
-
Wang Lingyun, Gui Weihua, Liu Meihua, Yang Chunhua. Prediction model of ion concentration based on improved online support vector regression. Control and Decision, 2009, 24(4): 537-541
-
(2009)
Control and Decision
, vol.24
, Issue.4
, pp. 537-541
-
-
Wang, L.1
Gui, W.2
Liu, M.3
Yang, C.4
-
7
-
-
33745777639
-
Incremental support vector learning: analysis, implementation and application
-
Laskov P, Gehl C, Kruger S, Muller K. Incremental support vector learning: analysis, implementation and application. Journal of Machine Learning Research, 2006, 7(9): 1909-1936
-
(2006)
Journal of Machine Learning Research
, vol.7
, Issue.9
, pp. 1909-1936
-
-
Laskov, P.1
Gehl, C.2
Kruger, S.3
Muller, K.4
-
8
-
-
0742290061
-
A new algorithm for online structure and parameter adaptation of RBF networks
-
Alexandridis A, Sarimveis H, Bafas G. A new algorithm for online structure and parameter adaptation of RBF networks. Neural Networks, 2003, 16(7): 1003-1017
-
(2003)
Neural Networks
, vol.16
, Issue.7
, pp. 1003-1017
-
-
Alexandridis, A.1
Sarimveis, H.2
Bafas, G.3
-
9
-
-
67650083264
-
Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size
-
Liu Y, Hu N, Wang H, Li P. Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size. Ind. Eng. Chem. Res., 2009, 48(12): 5731-5741
-
(2009)
Ind. Eng. Chem. Res.
, vol.48
, Issue.12
, pp. 5731-5741
-
-
Liu, Y.1
Hu, N.2
Wang, H.3
Li, P.4
-
10
-
-
0035351774
-
An analysis of SVMs generalization performance
-
Zhou Weida, Zhang Li, Jiao Licheng. An analysis of SVMs generalization performance. Acta Electronica Sinica, 2001, 29(5): 590-594
-
(2001)
Acta Electronica Sinica
, vol.29
, Issue.5
, pp. 590-594
-
-
Zhou, W.1
Zhang, L.2
Jiao, L.3
-
11
-
-
0036825528
-
Weighted least squares support vector machines: robustness and sparse approximation
-
Suykens J, Brabanter J, Lukas L, Vandewalle J. Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing, 2002, 48(1-4): 85-105
-
(2002)
Neurocomputing
, vol.48
, Issue.1-4
, pp. 85-105
-
-
Suykens, J.1
Brabanter, J.2
Lukas, L.3
Vandewalle, J.4
-
12
-
-
69349092894
-
Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR
-
Cui W, Yan X. Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR. Chemometrics and Intelligent Laboratory Systems, 2009, 98(2): 130-135
-
(2009)
Chemometrics and Intelligent Laboratory Systems
, vol.98
, Issue.2
, pp. 130-135
-
-
Cui, W.1
Yan, X.2
-
13
-
-
2942558590
-
A new data-based methodology for nonlinear process modeling
-
Cheng C, Chiu M S. A new data-based methodology for nonlinear process modeling. Chemical Engineering Science, 2004, 59(13): 2801-2810
-
(2004)
Chemical Engineering Science
, vol.59
, Issue.13
, pp. 2801-2810
-
-
Cheng, C.1
Chiu, M.S.2
-
14
-
-
84863115858
-
Generalised predictive control for non-linear process systems based on lazy learning
-
Pan T H, Li S Y. Generalised predictive control for non-linear process systems based on lazy learning. International Journal of Modelling, Identification and Control, 2006, 1(3): 230-238
-
(2006)
International Journal of Modelling, Identification and Control
, vol.1
, Issue.3
, pp. 230-238
-
-
Pan, T.H.1
Li, S.Y.2
-
15
-
-
8444241860
-
Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
-
Cawley G, Talbot N. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Networks, 2004, 17(10): 1467-1475
-
(2004)
Neural Networks
, vol.17
, Issue.10
, pp. 1467-1475
-
-
Cawley, G.1
Talbot, N.2
-
16
-
-
50049088279
-
Adaptive local learning based least squares support vector regression with application to online modeling for fermentation processes
-
Liu Yi, Wang Haiqing, Li Ping. Adaptive local learning based least squares support vector regression with application to online modeling for fermentation processes. Journal of Chemical Industry and Engineering(China), 2008, 59(8): 2052-2057
-
(2008)
Journal of Chemical Industry and Engineering(China)
, vol.59
, Issue.8
, pp. 2052-2057
-
-
Liu, Y.1
Wang, H.2
Li, P.3
-
17
-
-
67349249355
-
Orthogonal-least-squares regression: a unified approach for data modeling
-
Chen S, Hong X, Luk B, Harris C. Orthogonal-least-squares regression: a unified approach for data modeling. Neurocomputing, 2009, 72(10-12): 2670-2681
-
(2009)
Neurocomputing
, vol.72
, Issue.10-12
, pp. 2670-2681
-
-
Chen, S.1
Hong, X.2
Luk, B.3
Harris, C.4
|