메뉴 건너뛰기




Volumn 16, Issue 8, 2004, Pages 909-921

Efficient disk-based K-means clustering for relational databases

Author keywords

Clustering; Disk; K means; Relational databases

Indexed keywords

CLUSTERING; K-MEANS; RELATIONAL DATABASES;

EID: 4344647570     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2004.25     Document Type: Article
Times cited : (83)

References (46)
  • 2
    • 0039253822 scopus 로고    scopus 로고
    • Finding generalized projected clusters in high Dimensional spaces
    • C. Aggarwal and P. Yu, "Finding Generalized Projected Clusters in High Dimensional Spaces," Proc. ACM SIGMOD Conf., 2000.
    • (2000) Proc. ACM SIGMOD Conf.
    • Aggarwal, C.1    Yu, P.2
  • 3
  • 4
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopolos, and P. Raghavan, "Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications, " Proc. ACM SIGMOD Conf., 1998.
    • (1998) Proc. ACM SIGMOD Conf.
    • Agrawal, R.1    Gehrke, J.2    Gunopolos, D.3    Raghavan, P.4
  • 5
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imielinski, and A. Swami, "Mining Association Rules between Sets of Items in Large Databases," Proc. ACM SIGMOD Conf., pp. 207-216, 1993.
    • (1993) Proc. ACM SIGMOD Conf. , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 9
    • 0038589151 scopus 로고    scopus 로고
    • Scaling EM clustering to large databases
    • Microsoft Research
    • P. Bradley, U. Fayyad, and C. Reina, "Scaling EM Clustering to Large Databases," technical report, Microsoft Research, 1999.
    • (1999) Technical Report
    • Bradley, P.1    Fayyad, U.2    Reina, C.3
  • 10
    • 0034819223 scopus 로고    scopus 로고
    • Data bubbles: Quality preserving performance boosting for hierarchical clustering
    • M. Breunig, H.P. Kriegel, P. Kroger, and J. Sander, "Data Bubbles: Quality Preserving Performance Boosting for Hierarchical Clustering," Proc. ACM SIGMOD Conf., 2001.
    • (2001) Proc. ACM SIGMOD Conf.
    • Breunig, M.1    Kriegel, H.P.2    Kroger, P.3    Sander, J.4
  • 11
    • 33645961675 scopus 로고    scopus 로고
    • Rethinking database system architecture: Towards a self-tuning RISC-style database system
    • S. Chaudhuri and G. Weikum, "Rethinking Database System Architecture: Towards a Self-Tuning RISC-Style Database System," Proc. Very Large Data Base Conf., 2000.
    • (2000) Proc. Very Large Data Base Conf.
    • Chaudhuri, S.1    Weikum, G.2
  • 13
    • 0002629270 scopus 로고
    • Maximum likelihood estimation from incomplete data via the EM algorithm
    • A.P. Dempster, N.M. Laird, and D. Rubin, "Maximum Likelihood Estimation from Incomplete Data via the EM Algorithm," J. Royal Statistical Soc., vol. 39, no. 1, pp. 1-38, 1977.
    • (1977) J. Royal Statistical Soc. , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.3
  • 17
    • 0002679222 scopus 로고    scopus 로고
    • Scalability for clustering algorithms revisited
    • June
    • F. Fanstrom, J. Lewis, and C. Elkan, "Scalability for Clustering Algorithms Revisited," SIGKDD Explorations, vol. 2, no. 1, pp. 51-57, June 2000.
    • (2000) SIGKDD Explorations , vol.2 , Issue.1 , pp. 51-57
    • Fanstrom, F.1    Lewis, J.2    Elkan, C.3
  • 18
    • 0030285403 scopus 로고    scopus 로고
    • The kdd process for extracting useful Knowledge from volumes of data
    • Nov.
    • U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, "The Kdd Process for Extracting Useful Knowledge from Volumes of Data," Comm. ACM, vol. 39, no. 11, pp, 27-34, Nov. 1996.
    • (1996) Comm. ACM , vol.39 , Issue.11 , pp. 27-34
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 19
    • 0031069945 scopus 로고    scopus 로고
    • The LBG-U method for 'vector quantization-an improvement over LBG inspired from neural networks
    • B. Fritzke, "The LBG-U Method for 'Vector Quantization-An Improvement over LBG Inspired from Neural Networks," Neural Processing Letters, vol. 5, no. 1, pp. 35-45, 1997.
    • (1997) Neural Processing Letters , vol.5 , Issue.1 , pp. 35-45
    • Fritzke, B.1
  • 21
    • 0032091595 scopus 로고    scopus 로고
    • Cure: An efficient clustering algorithm for large databases
    • S. Guha, R. Rastogi, and K. Shim, "Cure: An Efficient Clustering Algorithm for Large Databases," Proc. SIGMOD Conf., 1998.
    • (1998) Proc. SIGMOD Conf.
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 22
  • 23
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • J. Han, J. Pei, and Y. Yun, "Mining Frequent Patterns without Candidate Generation," Proc. ACM SIGMOD Conf., 2000.
    • (2000) Proc. ACM SIGMOD Conf.
    • Han, J.1    Pei, J.2    Yun, Y.3
  • 24
    • 0000835955 scopus 로고    scopus 로고
    • Optimal grid-clustering: Towards breaking the curse of dimensionality
    • A. Hinneburg and D. Keim, "Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality," Proc. Very Large Data Base Conf., 1999.
    • (1999) Proc. Very Large Data Base Conf.
    • Hinneburg, A.1    Keim, D.2
  • 25
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Z. Huang, "Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values," Data Mining and Knowledge Discovery, vol. 2, no. 3, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.3
    • Huang, Z.1
  • 26
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the EM algorithm
    • M. Jordan and R. Jacobs, "Hierarchical Mixtures of Experts and the EM Algorithm," Neural Computation, vol. 6, no. 2, 1994.
    • (1994) Neural Computation , vol.6 , Issue.2
    • Jordan, M.1    Jacobs, R.2
  • 30
    • 0003539785 scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse and other variants
    • Dept. of Statistics, Univ. of Toronto
    • R. Neal, G. Hinton, "A View of the EM Algorithm that Justifies Incremental, Sparse and Other Variants," technical report, Dept. of Statistics, Univ. of Toronto, 1993.
    • (1993) Technical Report
    • Neal, R.1    Hinton, G.2
  • 32
    • 0034196966 scopus 로고    scopus 로고
    • K-means type algorithms on distributed memory computers
    • M. Ng, "K-means Type Algorithms on Distributed Memory Computers," Int'l J. High Speed Computing, vol. 11, no. 2, 2000.
    • (2000) Int'l J. High Speed Computing , vol.11 , Issue.2
    • Ng, M.1
  • 33
    • 0003136237 scopus 로고
    • Efficient and effective clustering method for spatial data mining
    • R. Ng and J. Han, "Efficient and Effective Clustering Method for Spatial Data Mining," Proc. Very Large Data Bases Conf., 1994.
    • (1994) Proc. Very Large Data Bases Conf.
    • Ng, R.1    Han, J.2
  • 34
    • 77952400167 scopus 로고    scopus 로고
    • Clustering binary data streams with K-means
    • C. Ordonez, "Clustering Binary Data Streams with K-means," Proc. ACM DKMD Workshop, 2003.
    • (2003) Proc. ACM DKMD Workshop
    • Ordonez, C.1
  • 35
  • 38
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood, and the EM algorithm
    • R.A. Redner and H.F. Walker, "Mixture Densities, Maximum Likelihood, and the EM Algorithm," SIAM Rev., vol. 26, pp. 195-239, 1984.
    • (1984) SIAM Rev. , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 40
    • 77953987872 scopus 로고    scopus 로고
    • Integrating mining with relational databases: Alternatives and implications
    • S. Sarawagi, S. Thomas, and R. Agrawal, "Integrating Mining with Relational Databases: Alternatives and Implications," Proc. ACM SIGMOD Conf., 1998.
    • (1998) Proc. ACM SIGMOD Conf.
    • Sarawagi, S.1    Thomas, S.2    Agrawal, R.3
  • 45
    • 0000845117 scopus 로고
    • On convergence properties of the EM algorithm for gaussian mixtures
    • L. Xu and M. Jordan, "On Convergence Properties of the EM Algorithm for Gaussian Mixtures," Neural Computation, vol. 7, 1995.
    • (1995) Neural Computation , vol.7
    • Xu, L.1    Jordan, M.2
  • 46
    • 0030157145 scopus 로고    scopus 로고
    • Birch: An efficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny, "Birch: An Efficient Data Clustering Method for Very Large Databases," Proc. ACM SIGMOD Conf., 1996.
    • (1996) Proc. ACM SIGMOD Conf.
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.