메뉴 건너뛰기




Volumn 51, Issue 1-2, 2014, Pages 363-379

Nonlinear Schrödinger equations near an infinite well potential

Author keywords

35J20; 35J61; 35J91; 35Q55; 58E05

Indexed keywords


EID: 84906313286     PISSN: 09442669     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00526-013-0678-5     Document Type: Article
Times cited : (6)

References (30)
  • 1
    • 0002540728 scopus 로고
    • A primer on connectivity
    • Lecture Notes in Math., vol. 886. Springer, Berlin
    • Alexander, J.: A primer on connectivity. In: Proc. Conf. Fixed Point Theory (Sherbrooke, Que., 1980), pp. 455-483. Lecture Notes in Math., vol. 886. Springer, Berlin (1981).
    • (1981) Proc. Conf. Fixed Point Theory (Sherbrooke, Que., 1980) , pp. 455-483
    • Alexander, J.1
  • 2
    • 33751072936 scopus 로고    scopus 로고
    • Existence of multi-bump solutions for a class of quasilinear problems
    • Alves, C. O.: Existence of multi-bump solutions for a class of quasilinear problems. Adv. Nonlinear Stud. 6, 491-509 (2006).
    • (2006) Adv. Nonlinear Stud. , vol.6 , pp. 491-509
    • Alves, C.O.1
  • 5
    • 84888641393 scopus 로고    scopus 로고
    • Multi-bubble nodal solutions for slightly subcritical elliptic problems in domains with symmetries
    • Bartsch, T., d'Aprile, T., Pistoia, A.: Multi-bubble nodal solutions for slightly subcritical elliptic problems in domains with symmetries. Ann. l'Inst. H. Poincaré, Anal. Nonlinear. (2013). http://dx. doi. org/10. 1016/j. anihpc. 2013. 01. 001.
    • (2013) Ann. l'Inst. H. Poincaré, Anal. Nonlinear.
    • Bartsch, T.1    d'Aprile, T.2    Pistoia, A.3
  • 6
    • 84891920651 scopus 로고    scopus 로고
    • On the profile of sign changing solutions of an almost critical problem in the ball
    • doi: 10. 1112/blms/bdt061
    • Bartsch, T., d'Aprile, T., Pistoia, A.: On the profile of sign changing solutions of an almost critical problem in the ball. Bull. London Math. Soc. (2013). doi: 10. 1112/blms/bdt061.
    • (2013) Bull. London Math. Soc.
    • Bartsch, T.1    d'Aprile, T.2    Pistoia, A.3
  • 7
    • 33646504149 scopus 로고    scopus 로고
    • On the existence and the profile of nodal solutions of elliptic equations involving critical growth
    • Bartsch, T., Micheletti, A., Pistoia, A.: On the existence and the profile of nodal solutions of elliptic equations involving critical growth. Calc. Var. Part. Differ. Equ. 26, 265-282 (2006).
    • (2006) Calc. Var. Part. Differ. Equ. , vol.26 , pp. 265-282
    • Bartsch, T.1    Micheletti, A.2    Pistoia, A.3
  • 8
    • 0346289757 scopus 로고    scopus 로고
    • Nonlinear Schrödinger equations with steep potential well
    • Bartsch, T., Pankov, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 549-569 (2001).
    • (2001) Commun. Contemp. Math. , vol.3 , pp. 549-569
    • Bartsch, T.1    Pankov, A.2    Wang, Z.-Q.3
  • 9
    • 84867013861 scopus 로고    scopus 로고
    • Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential
    • Bartsch, T., Tang, Z.: Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discret. Contin. Dyn. Syst. 33, 7-26 (2013).
    • (2013) Discret. Contin. Dyn. Syst. , vol.33 , pp. 7-26
    • Bartsch, T.1    Tang, Z.2
  • 14
    • 34247556519 scopus 로고    scopus 로고
    • Bound states for semilinear Schrödinger equations with sign-changing potential
    • Ding, Y., Szulkin, A.: Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. Partial Differ. Equ. 29, 397-419 (2007).
    • (2007) Calc. Var. Partial Differ. Equ. , vol.29 , pp. 397-419
    • Ding, Y.1    Szulkin, A.2
  • 15
    • 0141568995 scopus 로고    scopus 로고
    • Multiplicity of positive solutions of a nonlinear Schrödinger equation
    • Ding, Y., Tanaka, K.: Multiplicity of positive solutions of a nonlinear Schrödinger equation. Manuscr. Math. 112, 109-135 (2003).
    • (2003) Manuscr. Math. , vol.112 , pp. 109-135
    • Ding, Y.1    Tanaka, K.2
  • 16
    • 77956265293 scopus 로고    scopus 로고
    • Multiplicity and concentration of solutions for elliptic systems with vanishing potentials
    • Furtado, M., Silva, E. A. B., Xavier, M. S.: Multiplicity and concentration of solutions for elliptic systems with vanishing potentials. J. Differ. Equ. 249, 2377-2396 (2010).
    • (2010) J. Differ. Equ. , vol.249 , pp. 2377-2396
    • Furtado, M.1    Silva, E.A.B.2    Xavier, M.S.3
  • 17
    • 79956285395 scopus 로고    scopus 로고
    • Schrödinger-Poisson system with steep potential well
    • Jiang, Y., Zhou, H.-S.: Schrödinger-Poisson system with steep potential well. J. Differ. Equ. 251, 582-608 (2011).
    • (2011) J. Differ. Equ. , vol.251 , pp. 582-608
    • Jiang, Y.1    Zhou, H.-S.2
  • 18
    • 0000606193 scopus 로고    scopus 로고
    • Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry
    • Kondrat'ev, V., Shubin, M.: Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry. Oper. Theory Adv. Appl. 110, 185-226 (1999).
    • (1999) Oper. Theory Adv. Appl. , vol.110 , pp. 185-226
    • Kondrat'ev, V.1    Shubin, M.2
  • 19
    • 18144416971 scopus 로고    scopus 로고
    • Nodal type bound states of Schrödinger equations via invariant set and minimax methods
    • Liu, Z., van Heerden, F. A., Wang, Z.-Q.: Nodal type bound states of Schrödinger equations via invariant set and minimax methods. J. Differ. Equ. 214, 358-390 (2005).
    • (2005) J. Differ. Equ. , vol.214 , pp. 358-390
    • Liu, Z.1    van Heerden, F.A.2    Wang, Z.-Q.3
  • 20
    • 77957263596 scopus 로고    scopus 로고
    • Sign-changing solutions for a class of nonlinear Schrödinger equations
    • Liu, X., Huang, Y.: Sign-changing solutions for a class of nonlinear Schrödinger equations. Bull. Australian Math. Soc. 80, 294-305 (2009).
    • (2009) Bull. Australian Math. Soc. , vol.80 , pp. 294-305
    • Liu, X.1    Huang, Y.2
  • 21
    • 78650991849 scopus 로고    scopus 로고
    • Sign-changing solutions for an asymptotically linear Schrödinger equation with deepening potential well
    • Liu, X., Huang, Y., Liu, J.: Sign-changing solutions for an asymptotically linear Schrödinger equation with deepening potential well. Adv. Differ. Equ. 16, 1-30 (2011).
    • (2011) Adv. Differ. Equ. , vol.16 , pp. 1-30
    • Liu, X.1    Huang, Y.2    Liu, J.3
  • 22
    • 84906314885 scopus 로고
    • On the discreteness of the spectrum conditions for self-adjoint differential equations of the second order. Trudy Mosk. Matem. Obshchestva 2, 169-199 (in Russian)
    • Molchanov, A. M.: On the discreteness of the spectrum conditions for self-adjoint differential equations of the second order. Trudy Mosk. Matem. Obshchestva 2, 169-199 (in Russian). Adv. Differ. Equ. 16(2011), 1-30 (1953).
    • (1953) Adv. Differ. Equ. , vol.16 , Issue.2011 , pp. 1-30
    • Molchanov, A.M.1
  • 23
    • 73049092939 scopus 로고    scopus 로고
    • Tower of bubbles for almost critical problems in general domains
    • Musso, M., Pistoia, A.: Tower of bubbles for almost critical problems in general domains. J. Math. Pure Appl. 93, 1-40 (2010).
    • (2010) J. Math. Pure Appl. , vol.93 , pp. 1-40
    • Musso, M.1    Pistoia, A.2
  • 24
    • 61949277482 scopus 로고    scopus 로고
    • On decay of solutions to nonlinear Schrödinger equations
    • Pankov, A.: On decay of solutions to nonlinear Schrödinger equations. Proc. Am. Math. Soc. 136, 2565-2570 (2008).
    • (2008) Proc. Am. Math. Soc. , vol.136 , pp. 2565-2570
    • Pankov, A.1
  • 26
    • 33947159050 scopus 로고    scopus 로고
    • Sign-changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem
    • Pistoia, A., Weth, T.: Sign-changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem. Ann. Inst. H. Poincaré. Anal. Nonlinear. 24, 325-340 (2007).
    • (2007) Ann. Inst. H. Poincaré. Anal. Nonlinear. , vol.24 , pp. 325-340
    • Pistoia, A.1    Weth, T.2
  • 27
    • 77950659711 scopus 로고    scopus 로고
    • Sign-changing multi-bump solutions for nonlinear Schrödinger equations with steep potential wells
    • Sato, Y., Tanaka, K.: Sign-changing multi-bump solutions for nonlinear Schrödinger equations with steep potential wells. Trans. Am. Math. Soc. 361, 6205-6253 (2009).
    • (2009) Trans. Am. Math. Soc. , vol.361 , pp. 6205-6253
    • Sato, Y.1    Tanaka, K.2
  • 28
    • 33646008597 scopus 로고    scopus 로고
    • Global branch of solutions for non-linear Schrödinger equations with deepening potential well
    • Stuart, C. A., Zhou, H.-S.: Global branch of solutions for non-linear Schrödinger equations with deepening potential well. Proc. Lond. Math. Soc. 92, 655-681 (2006).
    • (2006) Proc. Lond. Math. Soc. , vol.92 , pp. 655-681
    • Stuart, C.A.1    Zhou, H.-S.2
  • 29
    • 74249120149 scopus 로고    scopus 로고
    • Positive solutions for nonlinear Schrödinger equations with deepening potential well
    • Wang, Z., Zhou, H.-S.: Positive solutions for nonlinear Schrödinger equations with deepening potential well. J. Eur. Math. Soc. 11, 545-573 (2009).
    • (2009) J. Eur. Math. Soc. , vol.11 , pp. 545-573
    • Wang, Z.1    Zhou, H.-S.2
  • 30
    • 10444240193 scopus 로고    scopus 로고
    • Sign-changing saddle point
    • Zou, W.: Sign-changing saddle point. J. Funct. Anal. 219, 433-468 (2005).
    • (2005) J. Funct. Anal. , vol.219 , pp. 433-468
    • Zou, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.