-
1
-
-
0002540728
-
A primer on connectivity
-
Lecture Notes in Math., vol. 886. Springer, Berlin
-
Alexander, J.: A primer on connectivity. In: Proc. Conf. Fixed Point Theory (Sherbrooke, Que., 1980), pp. 455-483. Lecture Notes in Math., vol. 886. Springer, Berlin (1981).
-
(1981)
Proc. Conf. Fixed Point Theory (Sherbrooke, Que., 1980)
, pp. 455-483
-
-
Alexander, J.1
-
2
-
-
33751072936
-
Existence of multi-bump solutions for a class of quasilinear problems
-
Alves, C. O.: Existence of multi-bump solutions for a class of quasilinear problems. Adv. Nonlinear Stud. 6, 491-509 (2006).
-
(2006)
Adv. Nonlinear Stud.
, vol.6
, pp. 491-509
-
-
Alves, C.O.1
-
5
-
-
84888641393
-
Multi-bubble nodal solutions for slightly subcritical elliptic problems in domains with symmetries
-
Bartsch, T., d'Aprile, T., Pistoia, A.: Multi-bubble nodal solutions for slightly subcritical elliptic problems in domains with symmetries. Ann. l'Inst. H. Poincaré, Anal. Nonlinear. (2013). http://dx. doi. org/10. 1016/j. anihpc. 2013. 01. 001.
-
(2013)
Ann. l'Inst. H. Poincaré, Anal. Nonlinear.
-
-
Bartsch, T.1
d'Aprile, T.2
Pistoia, A.3
-
6
-
-
84891920651
-
On the profile of sign changing solutions of an almost critical problem in the ball
-
doi: 10. 1112/blms/bdt061
-
Bartsch, T., d'Aprile, T., Pistoia, A.: On the profile of sign changing solutions of an almost critical problem in the ball. Bull. London Math. Soc. (2013). doi: 10. 1112/blms/bdt061.
-
(2013)
Bull. London Math. Soc.
-
-
Bartsch, T.1
d'Aprile, T.2
Pistoia, A.3
-
7
-
-
33646504149
-
On the existence and the profile of nodal solutions of elliptic equations involving critical growth
-
Bartsch, T., Micheletti, A., Pistoia, A.: On the existence and the profile of nodal solutions of elliptic equations involving critical growth. Calc. Var. Part. Differ. Equ. 26, 265-282 (2006).
-
(2006)
Calc. Var. Part. Differ. Equ.
, vol.26
, pp. 265-282
-
-
Bartsch, T.1
Micheletti, A.2
Pistoia, A.3
-
8
-
-
0346289757
-
Nonlinear Schrödinger equations with steep potential well
-
Bartsch, T., Pankov, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 549-569 (2001).
-
(2001)
Commun. Contemp. Math.
, vol.3
, pp. 549-569
-
-
Bartsch, T.1
Pankov, A.2
Wang, Z.-Q.3
-
9
-
-
84867013861
-
Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential
-
Bartsch, T., Tang, Z.: Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discret. Contin. Dyn. Syst. 33, 7-26 (2013).
-
(2013)
Discret. Contin. Dyn. Syst.
, vol.33
, pp. 7-26
-
-
Bartsch, T.1
Tang, Z.2
-
14
-
-
34247556519
-
Bound states for semilinear Schrödinger equations with sign-changing potential
-
Ding, Y., Szulkin, A.: Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. Partial Differ. Equ. 29, 397-419 (2007).
-
(2007)
Calc. Var. Partial Differ. Equ.
, vol.29
, pp. 397-419
-
-
Ding, Y.1
Szulkin, A.2
-
15
-
-
0141568995
-
Multiplicity of positive solutions of a nonlinear Schrödinger equation
-
Ding, Y., Tanaka, K.: Multiplicity of positive solutions of a nonlinear Schrödinger equation. Manuscr. Math. 112, 109-135 (2003).
-
(2003)
Manuscr. Math.
, vol.112
, pp. 109-135
-
-
Ding, Y.1
Tanaka, K.2
-
16
-
-
77956265293
-
Multiplicity and concentration of solutions for elliptic systems with vanishing potentials
-
Furtado, M., Silva, E. A. B., Xavier, M. S.: Multiplicity and concentration of solutions for elliptic systems with vanishing potentials. J. Differ. Equ. 249, 2377-2396 (2010).
-
(2010)
J. Differ. Equ.
, vol.249
, pp. 2377-2396
-
-
Furtado, M.1
Silva, E.A.B.2
Xavier, M.S.3
-
17
-
-
79956285395
-
Schrödinger-Poisson system with steep potential well
-
Jiang, Y., Zhou, H.-S.: Schrödinger-Poisson system with steep potential well. J. Differ. Equ. 251, 582-608 (2011).
-
(2011)
J. Differ. Equ.
, vol.251
, pp. 582-608
-
-
Jiang, Y.1
Zhou, H.-S.2
-
18
-
-
0000606193
-
Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry
-
Kondrat'ev, V., Shubin, M.: Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry. Oper. Theory Adv. Appl. 110, 185-226 (1999).
-
(1999)
Oper. Theory Adv. Appl.
, vol.110
, pp. 185-226
-
-
Kondrat'ev, V.1
Shubin, M.2
-
19
-
-
18144416971
-
Nodal type bound states of Schrödinger equations via invariant set and minimax methods
-
Liu, Z., van Heerden, F. A., Wang, Z.-Q.: Nodal type bound states of Schrödinger equations via invariant set and minimax methods. J. Differ. Equ. 214, 358-390 (2005).
-
(2005)
J. Differ. Equ.
, vol.214
, pp. 358-390
-
-
Liu, Z.1
van Heerden, F.A.2
Wang, Z.-Q.3
-
20
-
-
77957263596
-
Sign-changing solutions for a class of nonlinear Schrödinger equations
-
Liu, X., Huang, Y.: Sign-changing solutions for a class of nonlinear Schrödinger equations. Bull. Australian Math. Soc. 80, 294-305 (2009).
-
(2009)
Bull. Australian Math. Soc.
, vol.80
, pp. 294-305
-
-
Liu, X.1
Huang, Y.2
-
21
-
-
78650991849
-
Sign-changing solutions for an asymptotically linear Schrödinger equation with deepening potential well
-
Liu, X., Huang, Y., Liu, J.: Sign-changing solutions for an asymptotically linear Schrödinger equation with deepening potential well. Adv. Differ. Equ. 16, 1-30 (2011).
-
(2011)
Adv. Differ. Equ.
, vol.16
, pp. 1-30
-
-
Liu, X.1
Huang, Y.2
Liu, J.3
-
22
-
-
84906314885
-
On the discreteness of the spectrum conditions for self-adjoint differential equations of the second order. Trudy Mosk. Matem. Obshchestva 2, 169-199 (in Russian)
-
Molchanov, A. M.: On the discreteness of the spectrum conditions for self-adjoint differential equations of the second order. Trudy Mosk. Matem. Obshchestva 2, 169-199 (in Russian). Adv. Differ. Equ. 16(2011), 1-30 (1953).
-
(1953)
Adv. Differ. Equ.
, vol.16
, Issue.2011
, pp. 1-30
-
-
Molchanov, A.M.1
-
23
-
-
73049092939
-
Tower of bubbles for almost critical problems in general domains
-
Musso, M., Pistoia, A.: Tower of bubbles for almost critical problems in general domains. J. Math. Pure Appl. 93, 1-40 (2010).
-
(2010)
J. Math. Pure Appl.
, vol.93
, pp. 1-40
-
-
Musso, M.1
Pistoia, A.2
-
24
-
-
61949277482
-
On decay of solutions to nonlinear Schrödinger equations
-
Pankov, A.: On decay of solutions to nonlinear Schrödinger equations. Proc. Am. Math. Soc. 136, 2565-2570 (2008).
-
(2008)
Proc. Am. Math. Soc.
, vol.136
, pp. 2565-2570
-
-
Pankov, A.1
-
26
-
-
33947159050
-
Sign-changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem
-
Pistoia, A., Weth, T.: Sign-changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem. Ann. Inst. H. Poincaré. Anal. Nonlinear. 24, 325-340 (2007).
-
(2007)
Ann. Inst. H. Poincaré. Anal. Nonlinear.
, vol.24
, pp. 325-340
-
-
Pistoia, A.1
Weth, T.2
-
27
-
-
77950659711
-
Sign-changing multi-bump solutions for nonlinear Schrödinger equations with steep potential wells
-
Sato, Y., Tanaka, K.: Sign-changing multi-bump solutions for nonlinear Schrödinger equations with steep potential wells. Trans. Am. Math. Soc. 361, 6205-6253 (2009).
-
(2009)
Trans. Am. Math. Soc.
, vol.361
, pp. 6205-6253
-
-
Sato, Y.1
Tanaka, K.2
-
28
-
-
33646008597
-
Global branch of solutions for non-linear Schrödinger equations with deepening potential well
-
Stuart, C. A., Zhou, H.-S.: Global branch of solutions for non-linear Schrödinger equations with deepening potential well. Proc. Lond. Math. Soc. 92, 655-681 (2006).
-
(2006)
Proc. Lond. Math. Soc.
, vol.92
, pp. 655-681
-
-
Stuart, C.A.1
Zhou, H.-S.2
-
29
-
-
74249120149
-
Positive solutions for nonlinear Schrödinger equations with deepening potential well
-
Wang, Z., Zhou, H.-S.: Positive solutions for nonlinear Schrödinger equations with deepening potential well. J. Eur. Math. Soc. 11, 545-573 (2009).
-
(2009)
J. Eur. Math. Soc.
, vol.11
, pp. 545-573
-
-
Wang, Z.1
Zhou, H.-S.2
-
30
-
-
10444240193
-
Sign-changing saddle point
-
Zou, W.: Sign-changing saddle point. J. Funct. Anal. 219, 433-468 (2005).
-
(2005)
J. Funct. Anal.
, vol.219
, pp. 433-468
-
-
Zou, W.1
|