메뉴 건너뛰기




Volumn 29, Issue 3, 2007, Pages 397-419

Bound states for semilinear Schrödinger equations with sign-changing potential

Author keywords

[No Author keywords available]

Indexed keywords


EID: 34247556519     PISSN: 09442669     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00526-006-0071-8     Document Type: Article
Times cited : (177)

References (23)
  • 1
    • 6344263972 scopus 로고    scopus 로고
    • On a periodic Schrödinger equation with nonlocal superlinear part
    • Ackermann, N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z. 248, 423-443 (2004)
    • (2004) Math. Z , vol.248 , pp. 423-443
    • Ackermann, N.1
  • 2
    • 0040435197 scopus 로고    scopus 로고
    • Multiplicity results for some nonlinear Schrödinger equations with potentials
    • Ambrosetti, A., Malchiodi, A., Secchi, S.: Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Rat. Mech. Anal. 159, 253-271 (2001)
    • (2001) Arch. Rat. Mech. Anal , vol.159 , pp. 253-271
    • Ambrosetti, A.1    Malchiodi, A.2    Secchi, S.3
  • 3
    • 0009179578 scopus 로고
    • Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity
    • Bartolo, P., Benci, V., Fortunato, D.: Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity. Nonlin. Anal. 7, 981-1012 (1983)
    • (1983) Nonlin. Anal , vol.7 , pp. 981-1012
    • Bartolo, P.1    Benci, V.2    Fortunato, D.3
  • 4
    • 0346289757 scopus 로고    scopus 로고
    • Nonlinear Schrödinger equations with steep potential well
    • Bartsch, T., Pankov, A., Wang, Z.Q.: Nonlinear Schrödinger equations with steep potential well. Comm. Contemp. Math. 3, 549-569 (2001)
    • (2001) Comm. Contemp. Math , vol.3 , pp. 549-569
    • Bartsch, T.1    Pankov, A.2    Wang, Z.Q.3
  • 6
    • 0034342136 scopus 로고    scopus 로고
    • Multiple positive solutions for a nonlinear Schrödinger equation
    • Bartsch, T., Wang, Z.Q.: Multiple positive solutions for a nonlinear Schrödinger equation. Z. Angew. Math. Phys. 51, 366-384 (2000)
    • (2000) Z. Angew. Math. Phys , vol.51 , pp. 366-384
    • Bartsch, T.1    Wang, Z.Q.2
  • 8
    • 0142230503 scopus 로고    scopus 로고
    • Standing waves with a critical frequency for nonlinear Schrödinger equations, II
    • Byeon, J., Wang, Z.Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations, II. Calc. Var. PDE 18, 207-219 (2003)
    • (2003) Calc. Var. PDE , vol.18 , pp. 207-219
    • Byeon, J.1    Wang, Z.Q.2
  • 9
    • 34247611775 scopus 로고    scopus 로고
    • On the Schrödinger equation involving a critical Sobolev exponent and magnetic field
    • Chabrowski, J., Szulkin, A.: On the Schrödinger equation involving a critical Sobolev exponent and magnetic field. Top. Meth. Nonl. Anal. 25, 3-21 (2005)
    • (2005) Top. Meth. Nonl. Anal , vol.25 , pp. 3-21
    • Chabrowski, J.1    Szulkin, A.2
  • 10
    • 0001341199 scopus 로고    scopus 로고
    • Local mountain passes for semilinear problems in unbounded domains
    • del Pino, M., Felmer, P.: Local mountain passes for semilinear problems in unbounded domains. Calc. Var. PDE 4,121-137 (1996)
    • (1996) Calc. Var. PDE , vol.4 , pp. 121-137
    • del Pino, M.1    Felmer, P.2
  • 11
    • 32044474421 scopus 로고    scopus 로고
    • Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms
    • Ding, Y.H., Lee, C.: Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms. J. Diff. Eq. 222,137-163 (2006)
    • (2006) J. Diff. Eq , vol.222 , pp. 137-163
    • Ding, Y.H.1    Lee, C.2
  • 13
    • 0036689542 scopus 로고    scopus 로고
    • Semi-classical limit for the one dimensional nonlinear Schrödinger equation
    • Felmer, P., Torres, J.J.: Semi-classical limit for the one dimensional nonlinear Schrödinger equation. Comm. Contemp. Math. 4,481-512 (2002)
    • (2002) Comm. Contemp. Math , vol.4 , pp. 481-512
    • Felmer, P.1    Torres, J.J.2
  • 14
    • 0001613187 scopus 로고
    • Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential
    • Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Func. Anal. 69, 397-408 (1986)
    • (1986) J. Func. Anal , vol.69 , pp. 397-408
    • Floer, A.1    Weinstein, A.2
  • 15
    • 7244258733 scopus 로고    scopus 로고
    • Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities
    • Jeanjean, L., Tanaka,K.: Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calc. Var. PDE 21, 287-318 (2004)
    • (2004) Calc. Var. PDE , vol.21 , pp. 287-318
    • Jeanjean, L.1    Tanaka, K.2
  • 16
    • 85030707196 scopus 로고    scopus 로고
    • Lions, P.L.: The concentration-compactness principle in the calculus of variations. The Locally Compact Case. Part I. Ann. IMP, Analyse Non Linéaire 1, 109-145 (1984)
    • Lions, P.L.: The concentration-compactness principle in the calculus of variations. The Locally Compact Case. Part I. Ann. IMP, Analyse Non Linéaire 1, 109-145 (1984)
  • 17
    • 18144416971 scopus 로고    scopus 로고
    • Nodal type bound states of Schrödinger equations via invariant set and minimax methods
    • Liu, Z.L., van Heerden, F. A., Wang, Z.Q.: Nodal type bound states of Schrödinger equations via invariant set and minimax methods. J. Diff. Eq. 214, 358-390 (2005)
    • (2005) J. Diff. Eq , vol.214 , pp. 358-390
    • Liu, Z.L.1    van Heerden, F.A.2    Wang, Z.Q.3
  • 18
    • 84946264643 scopus 로고
    • Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V)a
    • Oh, Y.G.: Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V)a. Comm. PDE 13,1499-1519 (1988)
    • (1988) Comm. PDE , vol.13 , pp. 1499-1519
    • Oh, Y.G.1
  • 19
    • 0000998584 scopus 로고
    • On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential
    • Oh, Y.G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys. 131, 223-253 (1990)
    • (1990) Comm. Math. Phys , vol.131 , pp. 223-253
    • Oh, Y.G.1
  • 20
    • 34247572812 scopus 로고    scopus 로고
    • Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS 65, American Mathematical Society, Providence, R.I. (1986)
    • Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS 65, American Mathematical Society, Providence, R.I. (1986)
  • 21
    • 34249835055 scopus 로고
    • On a class of nonlinear Schrödinger equations
    • Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270-291 (1992)
    • (1992) Z. Angew. Math. Phys , vol.43 , pp. 270-291
    • Rabinowitz, P.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.