-
1
-
-
6344263972
-
On a periodic Schrödinger equation with nonlocal superlinear part
-
Ackermann, N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z. 248, 423-443 (2004)
-
(2004)
Math. Z
, vol.248
, pp. 423-443
-
-
Ackermann, N.1
-
2
-
-
0040435197
-
Multiplicity results for some nonlinear Schrödinger equations with potentials
-
Ambrosetti, A., Malchiodi, A., Secchi, S.: Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Rat. Mech. Anal. 159, 253-271 (2001)
-
(2001)
Arch. Rat. Mech. Anal
, vol.159
, pp. 253-271
-
-
Ambrosetti, A.1
Malchiodi, A.2
Secchi, S.3
-
3
-
-
0009179578
-
Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity
-
Bartolo, P., Benci, V., Fortunato, D.: Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity. Nonlin. Anal. 7, 981-1012 (1983)
-
(1983)
Nonlin. Anal
, vol.7
, pp. 981-1012
-
-
Bartolo, P.1
Benci, V.2
Fortunato, D.3
-
4
-
-
0346289757
-
Nonlinear Schrödinger equations with steep potential well
-
Bartsch, T., Pankov, A., Wang, Z.Q.: Nonlinear Schrödinger equations with steep potential well. Comm. Contemp. Math. 3, 549-569 (2001)
-
(2001)
Comm. Contemp. Math
, vol.3
, pp. 549-569
-
-
Bartsch, T.1
Pankov, A.2
Wang, Z.Q.3
-
6
-
-
0034342136
-
Multiple positive solutions for a nonlinear Schrödinger equation
-
Bartsch, T., Wang, Z.Q.: Multiple positive solutions for a nonlinear Schrödinger equation. Z. Angew. Math. Phys. 51, 366-384 (2000)
-
(2000)
Z. Angew. Math. Phys
, vol.51
, pp. 366-384
-
-
Bartsch, T.1
Wang, Z.Q.2
-
8
-
-
0142230503
-
Standing waves with a critical frequency for nonlinear Schrödinger equations, II
-
Byeon, J., Wang, Z.Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations, II. Calc. Var. PDE 18, 207-219 (2003)
-
(2003)
Calc. Var. PDE
, vol.18
, pp. 207-219
-
-
Byeon, J.1
Wang, Z.Q.2
-
9
-
-
34247611775
-
On the Schrödinger equation involving a critical Sobolev exponent and magnetic field
-
Chabrowski, J., Szulkin, A.: On the Schrödinger equation involving a critical Sobolev exponent and magnetic field. Top. Meth. Nonl. Anal. 25, 3-21 (2005)
-
(2005)
Top. Meth. Nonl. Anal
, vol.25
, pp. 3-21
-
-
Chabrowski, J.1
Szulkin, A.2
-
10
-
-
0001341199
-
Local mountain passes for semilinear problems in unbounded domains
-
del Pino, M., Felmer, P.: Local mountain passes for semilinear problems in unbounded domains. Calc. Var. PDE 4,121-137 (1996)
-
(1996)
Calc. Var. PDE
, vol.4
, pp. 121-137
-
-
del Pino, M.1
Felmer, P.2
-
11
-
-
32044474421
-
Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms
-
Ding, Y.H., Lee, C.: Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms. J. Diff. Eq. 222,137-163 (2006)
-
(2006)
J. Diff. Eq
, vol.222
, pp. 137-163
-
-
Ding, Y.H.1
Lee, C.2
-
12
-
-
77955436115
-
Existence and number of solutions for a class of semilinear Schrödinger equations
-
Cazenave, T, et al, eds, Birkhäuser, Basel
-
Ding, Y.H., Szulkin, A.: Existence and number of solutions for a class of semilinear Schrödinger equations. In: Cazenave, T., et al. (eds.) Contributions to Nonlinear Analysis. A tribute to D.G. de Figueiredo on the Occasion of his 70th Birthday, pp. 221-231. Birkhäuser, Basel (2006)
-
(2006)
Contributions to Nonlinear Analysis. A tribute to D.G. de Figueiredo on the Occasion of his 70th Birthday
, pp. 221-231
-
-
Ding, Y.H.1
Szulkin, A.2
-
13
-
-
0036689542
-
Semi-classical limit for the one dimensional nonlinear Schrödinger equation
-
Felmer, P., Torres, J.J.: Semi-classical limit for the one dimensional nonlinear Schrödinger equation. Comm. Contemp. Math. 4,481-512 (2002)
-
(2002)
Comm. Contemp. Math
, vol.4
, pp. 481-512
-
-
Felmer, P.1
Torres, J.J.2
-
14
-
-
0001613187
-
Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential
-
Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Func. Anal. 69, 397-408 (1986)
-
(1986)
J. Func. Anal
, vol.69
, pp. 397-408
-
-
Floer, A.1
Weinstein, A.2
-
15
-
-
7244258733
-
Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities
-
Jeanjean, L., Tanaka,K.: Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calc. Var. PDE 21, 287-318 (2004)
-
(2004)
Calc. Var. PDE
, vol.21
, pp. 287-318
-
-
Jeanjean, L.1
Tanaka, K.2
-
16
-
-
85030707196
-
-
Lions, P.L.: The concentration-compactness principle in the calculus of variations. The Locally Compact Case. Part I. Ann. IMP, Analyse Non Linéaire 1, 109-145 (1984)
-
Lions, P.L.: The concentration-compactness principle in the calculus of variations. The Locally Compact Case. Part I. Ann. IMP, Analyse Non Linéaire 1, 109-145 (1984)
-
-
-
-
17
-
-
18144416971
-
Nodal type bound states of Schrödinger equations via invariant set and minimax methods
-
Liu, Z.L., van Heerden, F. A., Wang, Z.Q.: Nodal type bound states of Schrödinger equations via invariant set and minimax methods. J. Diff. Eq. 214, 358-390 (2005)
-
(2005)
J. Diff. Eq
, vol.214
, pp. 358-390
-
-
Liu, Z.L.1
van Heerden, F.A.2
Wang, Z.Q.3
-
18
-
-
84946264643
-
Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V)a
-
Oh, Y.G.: Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V)a. Comm. PDE 13,1499-1519 (1988)
-
(1988)
Comm. PDE
, vol.13
, pp. 1499-1519
-
-
Oh, Y.G.1
-
19
-
-
0000998584
-
On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential
-
Oh, Y.G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys. 131, 223-253 (1990)
-
(1990)
Comm. Math. Phys
, vol.131
, pp. 223-253
-
-
Oh, Y.G.1
-
20
-
-
34247572812
-
-
Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS 65, American Mathematical Society, Providence, R.I. (1986)
-
Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS 65, American Mathematical Society, Providence, R.I. (1986)
-
-
-
-
21
-
-
34249835055
-
On a class of nonlinear Schrödinger equations
-
Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270-291 (1992)
-
(1992)
Z. Angew. Math. Phys
, vol.43
, pp. 270-291
-
-
Rabinowitz, P.H.1
|